Skip to main content
×
×
Home

Multi-year water and surface energy budget of a high-latitude polythermal glacier: evidence for overwinter water storage in a dynamic subglacial reservoir

  • Andy Hodson (a1), Jack Kohler (a2), Moana Brinkhaus (a1) and Peter Wynn (a3)
Abstract

This paper examines the water budget and surface energy balance of a Svalbard glacier (midre Lovénbreen) over a 6 year period (1997–2002). Fresh-water yields are found to lie between 1.1 and 1.5 m a–1 and reflect variable amounts of glacier ice ablation (0.27 ± 0.15 ma–1) and more consistent amounts of snowmelt and summer precipitation (0.40± 0.10 and 0.49 ± 0.12 m respectively). Between 24% and 36% of the annual runoff is thought to pass through a subglacial drainage system. Although the site is heavily influenced by stable maritime air masses during the summer, surface melting is achieved largely by net shortwave radiation fluxes (74–100% of ablation). Water budget analysis shows that the annual runoff yields may be strongly influenced by water storage within the glacial system. Storage can occur over the winter period and force the early development of the subglacial drainage system during the following summer. Thus annual water fluxes from this glacier cannot be estimated from glacial mass-balance data alone and there is a need to assess the implications of overwinter storage for our understanding of glacial dynamics, annual fluvial process rates and mixing processes in Svalbard’s fjords.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Multi-year water and surface energy budget of a high-latitude polythermal glacier: evidence for overwinter water storage in a dynamic subglacial reservoir
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Multi-year water and surface energy budget of a high-latitude polythermal glacier: evidence for overwinter water storage in a dynamic subglacial reservoir
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Multi-year water and surface energy budget of a high-latitude polythermal glacier: evidence for overwinter water storage in a dynamic subglacial reservoir
      Available formats
      ×
Copyright
References
Hide All
Brinkhaus, M. 2003. Modelling melt and runoff on a high arctic glacier: Midre Lovénbreen, Svalbard. (MSc thesis, University of Bochum.)
Brock, B.W. and Arnold, N.S.. 2000. A spreadsheet-based point surface energy balance model for glacier and snowmelt studies. Earth Surf. Proc. Land., 25(6), 649658.
Førland, E.J. and Hanssen-Bauer, I.. 2003. Past and future climate variations in the Norweigan arctic: overview and novel analysis. Polar Res., 22(2), 113124.
Hagen, J.O., Kohler, J., Melvold, K. and Winther, J.-G.. 2003. Glaciers in Svalbard: mass balance, runoff and freshwater flux. Polar Res., 22(2), 145159.
Hodson, A.J., Gurnell, A.M., Washington, R., Tranter, M., Clark, M.J. and Hagen, J.O.. 1998. Meteorological and runoff time-series characteristics in a small, high-Arctic glaciated basin, Svalbard. Hydrol. Process., 12(3), 509526.
Hodson, A.J., Tranter, M., and Vatne, G.. 2000. Contemporary rates of chemical denudation and atmospheric CO2 sequestration in glacier basins: an Arctic perspective. Earth Surf. Proc. Land., 25(13), 14471471.
Hodson, A.J., Mumford, P.N., Kohler, J. and Wynn, P.M.. 2005. The High Arctic glacial ecosystem: new insights from nutrient budgets. Biogeochemistry, 72(2), 233256.
Hop, H. and 27 others. 2002. The marine ecosystem of Kongsfjorden, Svalbard. Polar Res., 21(1), 167208.
Jansson, P. 1999. Effect of uncertainties in measured variables on the calculated mass balance of Storglaciären. Geogr. Ann., 81A(4), 633642.
Jansson, P., Hock, R. and Schneider, T.. 2003. The concept of glacier storage: a review. J. Hydrol., 282(1–4), 116129.
Killingtveit, Å., Pettersson, L.E. and Sand, K.. 2003. Water balance investigations in Svalbard. Polar Res., 22, 161174.
Kulessa, B. and Murray, T.. 2003. Slug-test derived differences in bed hydraulic properties between a surge-type and non-surge-type Svalbard glacier. Ann. Glaciol., 36, 103109.
Rippin, D. and 6 others. 2003. Changes in geometry and subglacial drainage of Midre Lovénbreen, Svalbard, determined from digital elevation models. Earth Surf. Proc. Land., 28(3), 273298.
Rippin, D.M., Willis, I.C., Arnold, N.S., Hodson, A.J. and Brinkhaus, M.. 2005. Spatial and temporal variations in surface velocity and basal drag across the tongue of the polythermal glacier midre Lovénbreen, Svalbard. J. Glaciol., 51(175), 588600.
Willis, I., Arnold, N. and Brock, B.. 2002. Effect of snowpack removal on energy balance, melt and runoff in a small supraglacial catchment. Hydrol. Process., 16(14), 27212749.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed