Skip to main content Accessibility help
×
×
Home

A new modeling framework for sea-ice mechanics based on elasto-brittle rheology

  • Lucas Girard (a1), Sylvain Bouillon (a2), Jérôme Weiss (a1), David Amitrano (a3), Thierry Fichefet (a2) and Vincent Legat (a4)...

Abstract

We present a new modeling framework for sea-ice mechanics based on elasto-brittle (EB) behavior. the EB framework considers sea ice as a continuous elastic plate encountering progressive damage, simulating the opening of cracks and leads. As a result of long-range elastic interactions, the stress relaxation following a damage event can induce an avalanche of damage. Damage propagates in narrow linear features, resulting in a very heterogeneous strain field. Idealized simulations of the Arctic sea-ice cover are analyzed in terms of ice strain rates and contrasted to observations and simulations performed with the classical viscous–plastic (VP) rheology. the statistical and scaling properties of ice strain rates are used as the evaluation metric. We show that EB simulations give a good representation of the shear faulting mechanism that accommodates most sea-ice deformation. the distributions of strain rates and the scaling laws of ice deformation are well captured by the EB framework, which is not the case for VP simulations. These results suggest that the properties of ice deformation emerge from elasto-brittle ice-mechanical behavior and motivate the implementation of the EB framework in a global sea-ice model.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A new modeling framework for sea-ice mechanics based on elasto-brittle rheology
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A new modeling framework for sea-ice mechanics based on elasto-brittle rheology
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A new modeling framework for sea-ice mechanics based on elasto-brittle rheology
      Available formats
      ×

Copyright

References

Hide All
Amitrano, D., Grasso, J.-R. and Hantz, D.. 1999. From diffuse to localised damage through elastic interaction. Geophys. Res. Lett., 26(14), 21092112.
Barnier, B. and 18 others. 2006. Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn., 56(5–6), 543567.
Comblen, R., Legrand, S., Deleersnijder, E. and Legat, V.. 2009. A finite element method for solving the shallow water equations on the sphere. Ocean Model., 28(1–3), 1223.
Coon, M.D., Maykut, G.A., Pritchard, R.S., Rothrock, D.A. and Thorndike, A.S.. 1974. Modeling the pack ice as an elastic–plastic material. AIDJEX Bull., 24, 1105.
Coon, M., Kwok, R., G. Levy, Pruis, M., Schreyer, H. and Sulsky, D.. 2007. Arctic Ice Dynamics Joint Experiment (AIDJEX) assumptions revisited and found inadequate. J. Geophys. Res., 112(C11), C11S90. (10.1029/2005JC003393.)
Doronin, Yu.P. and Kheisin, D.E.. 1977. Sea ice. New Delhi, Amerind Publishing Co.
Drakkar Group. 2007. Eddy-permitting ocean circulation hindcasts of past decades. Clivar Exchanges, 12(3), 810.
Feltham, D.L. 2005. Granular flow in the marginal ice zone. Philos. Trans. R. Soc. London, Ser. A, 363(1832), 16771700.
Feltham, D.L. 2008. Sea ice rheology. Annu. Rev. Fluid Mech., 40, 91112.
Fily, M. and Rothrock, D.A.. 1990. Opening and closing of sea ice leads: digital measurements from synthetic aperture radar. J. Geophys. Res., 95(C1), 789796.
Fortt, A.L. and Schulson, E.M.. 2007. The resistance to sliding along Coulombic shear faults in ice. Acta Mater., 55(7), 22532264.
Girard, L., Weiss, J.,Molines, J.M., Barnier, B. and Bouillon, S.. 2009. Evaluation of high-resolution sea ice models on the basis of statistical and scaling properties of Arctic sea ice drift and deformation. J. Geophys. Res., 114(C8), C08015. (10.1029/2008JC005182.)
Girard, L., Amitrano, D. and Weiss, J.. 2010. Failure as a critical phenomenon in a progressive damage model. J. Stat. Mech. Theory Exp., 1, P01013. (10.1088/1742-5468/2010/01/P01013.)
Gray, J.M.N.T. and Morland, L.W.. 1994. A two-dimensional model for the dynamics of sea ice. Philos. Trans. R. Soc. London, Ser. A, 347(1682), 219290.
Hibler, W.D., III. 1979. A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9(7), 815846.
Hibler, W.D., III. 1986. Ice dynamics. In Untersteiner, N., ed. Geophysics of sea ice. London, etc., Plenum Press, 577640.
Hopkins, M.A. and Thorndike, A.S.. 2006. Floe formation in Arctic sea ice. J. Geophys. Res., 111(C11), C11S23. (10.1029/2005JC003352.)
Hutchings, J.K., Roberts, A., Geiger, C. and Richter-Menge, J.. 2011. Spatial and temporal characterization of sea-ice deformation. Ann. Glaciol., 52(57) (see paper in this issue).
Kachanov, L.M. 1986. Introduction to continuum damage mechanics. Dordrecht, Martinus Nijhoff.
Kachanov, M. 1993. Elastic solids with many cracks and related problems. Adv. Appl. Mech., 30, 259445.
Kwok, R. 1998. the RADARSAT geophysical processor system. In Tsatsoulis, C. and Kwok, R.. eds. Analysis of SAR data of the polar oceans: recent advances. Berlin, etc., Springer-Verlag, 235257.
Kwok, R. 2001. Deformation of the Arctic Ocean sea ice cover between November 1996 and April 1997: a qualitative survey. In Dempsey, J.P. and Shen, H.H., eds. Proceedings of the IUTAM Symposium on Scaling Laws in Ice Mechanics and Ice Dynamics. Dordrecht, Kluwer Academic, 315322.
Kwok, R. 2006. Contrasts in sea ice deformation and production in the Arctic seasonal and perennial ice zones. J. Geophys. Res., 111(C11), C11S22. (10.1029/2005JC003246.)
Kwok, R., Hunke, E.C., Maslowski, W., Menemenlis, D. and Zhang, J.. 2008. Variability of sea ice simulations assessed with RGPS kinematics. J. Geophys. Res., 113(C11), C11012. (10.1029/2008JC004783.)
Lemieux, J.-F. and 6 others. 2010. Improving the numerical convergence of viscous–plastic sea ice models with the Jacobian-free Newton–Krylov method. J. Comput. Phys., 229(8), 28402852.
Lietaer, O., Fichefet, T. and Legat, V.. 2008. The effects of resolving the Canadian Arctic Archipelago in a finite element sea ice model. Ocean Model., 24(3–4), 140152.
Lindsay, R.W. and Stern, H.L.. 2003. The RADARSAT geophysical processor system: quality of sea ice trajectory and deformation estimates. J. Atmos. Oceanic Technol., 20(9), 13331347.
Lindsay, R.W., Zhang, J. and Rothrock, D.A.. 2003. Sea-ice deformation rates from satellite measurements and in a model. Atmos.– Ocean, 41(1), 3547.
Lique, C., Treguier, A.M., Scheinert, M. and Penduff, T.. 2009. A model-based study of ice and freshwater transport variability along both sides of Greenland. Climate Dyn., 33(5), 685705.
Marsan, D., Stern, H., Lindsay, R. and Weiss, J.. 2004. Scale dependence and localization of the deformation of Arctic sea ice. Phys. Rev. Lett., 93(17), 178501. (10.1103/PhysRevLett.93.178501.)
McPhee, M.G. 1975. Ice–ocean momentum transfer for the AIDJEX ice model. AIDJEX Bull., 29, 93111.
Rampal, P., Weiss, J., D. Marsan, Lindsay, R. and Stern, H.. 2008. Scaling properties of sea ice deformation from buoy dispersion analysis. J. Geophys. Res., 113(C3), C03002. (10.1029/2007JC004143.)
Rampal, P., Weiss, J. and Marsan, D.. 2009. Arctic sea ice velocity field: general circulation and turbulent-like fluctuations. J. Geophys. Res., 114(C10), C10014. (10.1029/2008JC005227.)
Schreyer, H.L., Sulsky, D.L., Munday, L.B., Coon, M.D. and Kwok, R.. 2006. Elastic–decohesive constitutive model for sea ice. J. Geophys. Res., 111(C11), C11S26. (10.1029/2005JC003334.)
Schulson, E.M. 2004. Compressive shear faults within Arctic sea ice: fracture on scales large and small. J. Geophys. Res., 109(C7), C07016. (10.1029/2003JC002108.)
Schulson, E.M. and Duval, P.. 2009. Creep and fracture of ice. Cambridge, etc., Cambridge University Press.
Schulson, E.M. and Hibler, W.D., III. 1991. The fracture of ice on scales large and small: Arctic leads and wing cracks. J. Glaciol., 37(127), 319322.
Schulson, E.M., Fortt, A.L., Iliescu, D. and Renshaw, C.E.. 2006. Failure envelope of first-year Arctic sea ice: the role of friction in compressive fracture. J. Geophys. Res., 111(C11), C11S25. (10.1029/2005JC003235.)
Stern, H.L. and Lindsay, R.W.. 2009. Spatial scaling of Arctic sea ice deformation. J. Geophys. Res., 114(C10), C10017. (10.1029/2009JC005380.)
Sulsky, D., Schreyer, H., K. Peterson, Kwok, R. and Coon, M.. 2007. Using the material-point method to model sea ice dynamics. J. Geophys. Res., 112(C2), C02S90. (10.1029/2005JC003329.)
Thomas, D. 1999. The quality of sea ice velocity estimates. J. Geophys. Res., 104(C6), 13,62713,652.
Thorndike, A.S. and Colony, R.. 1982. Sea ice motion in response to geostrophic winds. J. Geophys. Res., 87(C8), 58455852.
Wang, K. and Wang, C.. 2009. Modeling linear kinematic features in pack ice. J. Geophys. Res., 114(C12), C12011. (10.1029/2008JC005217.)
Weiss, J. 2008. Intermittency of principal stress directions within Arctic sea ice. Phys. Rev. E, 77(5), 056106. (10.1103/Phys-RevE.77.056106.)
Weiss, J. and Schulson, E.M.. 2009. Coulombic faulting from the grain scale to the geophysical scale: lessons from ice. J. Phys. D, 42(21), 214017. (10.1088/0022-3727/42/21/214017.)
Weiss, J., Schulson, E.M. and Stern, H.L.. 2007. Sea ice rheology from in-situ, satellite and laboratory observations: fracture and friction. Earth Planet. Sci. Lett., 255(1–2), 18.
Weiss, J., Marsan, D. and Rampal, P.. 2009. Space and time scaling laws induced by the multiscale fracturing of the Arctic sea ice cover. In Borodich, F.M., ed. Proceedings of the IUTAM Symposium on Scaling in Solid Mechanics, 25–29 June 2007, Cardiff, UK. Berlin, Springer, 101109.
Wilchinsky, A.V. and Feltham, D.L.. 2006. Modelling the rheology of sea ice as a collection of diamond-shaped floes. J. Non-Newtonian Fluid Mech., 138(1), 2232.
Wilchinsky, A.V., Feltham, D.L. and Hopkins, M.A.. 2010. The effect of shear rupture on aggregate scale formation in sea ice. J. Geophys. Res., 115(C10), C10002. (10.1029/ 2009JC006043.)
Wilchinsky, A.V., Feltham, D.L. and Hopkins, M.A.. 2011. Modelling the reorientation of sea-ice faults as the wind changes direction. Ann. Glaciol., 52(57) (see paper in this issue).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed