Skip to main content Accessibility help
×
Home

Pancake sea ice kinematics and dynamics using shipboard stereo video

  • Madison Smith (a1) and Jim Thomson (a1)

Abstract

In the marginal ice zone, surface waves drive motion of sea ice floes. The motion of floes relative to each other can cause periodic collisions, and drives the formation of pancake sea ice. Additionally, the motion of floes relative to the water results in turbulence generation at the interface between the ice and ocean below. These are important processes for the formation and growth of pancakes, and likely contribute to wave energy loss. Models and laboratory studies have been used to describe these motions, but there have been no in situ observations of relative ice velocities in a natural wave field. Here, we use shipboard stereo video to measure wave motion and relative motion of pancake floes simultaneously. The relative velocities of pancake floes are typically small compared to wave orbital motion (i.e. floes mostly follow the wave orbits). We find that relative velocities are well-captured by existing phase-resolved models, and are only somewhat over-estimated by using bulk wave parameters. Under the conditions observed, estimates of wave energy loss from ice–ocean turbulence are much larger than from pancake collisions. Increased relative pancake floe velocities in steeper wave fields may then result in more wave attenuation by increasing ice–ocean shear.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Pancake sea ice kinematics and dynamics using shipboard stereo video
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Pancake sea ice kinematics and dynamics using shipboard stereo video
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Pancake sea ice kinematics and dynamics using shipboard stereo video
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.

Corresponding author

Author for correspondence: Madison Smith, E-mail: mmsmith@uw.edu

References

Hide All
Alberello, A and 6 others (2019) Brief communication: Pancake ice floe size distribution during the winter expansion of the antarctic marginal ice zone. The Cryosphere, 13(1), 4148.
Benetazzo, A, Francesco, B, Filippo, B, Sandro, C and Mauro, S (2017) Space-time extreme wind waves: Analysis and prediction of shape and height. Ocean Modelling, 113, 201216.
Campbell, AJ, Bechle, AJ and Wu, CH (2014) Observations of surface waves interacting with ice using stereo imaging. Journal of Geophysical Research: Oceans, 119(6), 32663284.
Cheng, S and 10 others (2017) Calibrating a viscoelastic sea ice model for wave propagation in the Arctic fall marginal ice zone. Journal of Geophysical Research: Oceans, 122(11), 87708793.
Collins, C, Doble, M, Lund, B and Smith, M (2018) Observations of surface wave dispersion in the marginal ice zone. Journal of Geophysical Research: Oceans, 123(5), 33363354.
De Carolis, G and Desiderio, D (2002) Dispersion and attenuation of gravity waves in ice: A two-layer viscous fluid model with experimental data validation. Physics Letters A, 305(6), 399412.
Doble, MJ (2009) Simulating pancake and frazil ice growth in the Weddell Sea: A process model from freezing to consolidation. Journal of Geophysical Research: Oceans, 114(C9), 110. doi: 10.1029/2008JC004935
Doble, MJ, Coon, MD and Wadhams, P (2003) Pancake ice formation in the Weddell Sea. Journal of Geophysical Research: Oceans, 108(C7), 113. doi: 10.1029/2002JC001373
Doble, MJ, De Carolis, G, Meylan, MH, Bidlot, JR and Wadhams, P (2015) Relating wave attenuation to pancake ice thickness, using field measurements and model results. Geophysical Research Letters, 42(11), 44734481.
Grotmaack, R and Meylan, MH (2006) Wave forcing of small floating bodies. Journal of Waterway, Port, Coastal, and Ocean Engineering, 132(3), 192198.
Herman, A (2011) Molecular-dynamics simulation of clustering processes in sea-ice floes. Physical Review E, 84(5), 056104.
Herman, A (2013) Numerical modeling of force and contact networks in fragmented sea ice. Annals of Glaciology, 54(62), 114120.
Herman, A (2018) Wave-induced surge motion and collisions of sea ice floes: Finite-floe-size effects. Journal of Geophysical Research: Oceans, 123(10), 74727494.
Kohout, AL, Meylan, MH and Plew, DR (2011) Wave attenuation in a marginal ice zone due to the bottom roughness of ice floes. Annals of Glaciology, 52(57), 118122.
Lange, M, Ackley, S, Wadhams, P, Dieckmann, G and Eicken, H (1989) Development of sea ice in the weddell sea. Annals of Glaciology, 12, 9296.
Li, H, Lubbad, R and others (2018) Laboratory study of ice floes collisions under wave action. The 28th International Ocean and Polar Engineering Conference, International Society of Offshore and Polar Engineers, Sapporo, Japan.
Li, J and 5 others (2017) Rollover of apparent wave attenuation in ice covered seas. Journal of Geophysical Research: Oceans, 122(11), 85578566.
Meylan, MH, Yiew, LJ, Bennetts, LG, French, BJ and Thomas, GA (2015) Surge motion of an ice floe in waves: comparison of a theoretical and an experimental model. Annals of Glaciology, 56(69), 155159.
Niioka, T and Kohei, C (2010) Sea ice thickness measurement from an ice breaker using a stereo imaging system consisted of a pairs of high definition video cameras. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Kyoto Japan, 38(8), 10531056.
Persson, POG and and 8 others (2018) Shipboard observations of the meteorology and near-surface environment during autumn freeze-up in the Beaufort/Chukchi Seas. Journal of Geophysical Research: Oceans, 123(7), 49304969.
Plant, WJ (1982) A relationship between wind stress and wave slope. Journal of Geophysical Research: Oceans, 87(C3), 19611967.
Rabault, J, Sutherland, G, Jensen, A, Christensen, KH and Marchenko, A (2019) Experiments on wave propagation in grease ice: Combined wave gauges and particle image velocimetry measurements. Journal of Fluid Mechanics, 864, 876898.
Roach, LA, Smith, MM and Dean, SM (2018) Quantifying growth of pancake sea ice floes using images from drifting buoys. Journal of Geophysical Research: Oceans, 123(4), 28512866.
Rohith, M, Somanath, G, Kambhamettu, C and Geiger, CA (2009) Stereo analysis of low textured regions with application towards sea-ice reconstruction. IPCV, Las Vegas, Nevada, USA, pp. 2329.
Rottier, PJ (1992) Floe pair interaction event rates in the marginal ice zone. Journal of Geophysical Research: Oceans, 97(C6), 93919400. doi: 10.1029/92JC00152
Rumer, RR, Crissman, RD and Wake, A (1979) Ice Transport in Great Lakes. Great Lakes Environmental Research Laboratory, National Oceanic and Atmospheric Administration, US Dept. of Commerce.
Schwendeman, M and Thomson, J (2015) A horizon-tracking method for shipboard video stabilization and rectification. Journal of Atmospheric and Oceanic Technology, 32(1), 164176.
Schwendeman, MS and Thomson, J (2017) Sharp-crested breaking surface waves observed from a ship-based stereo video system. Journal of Physical Oceanography, 47(4), 775792.
Shen, HH (2019) Modelling ocean waves in ice-covered seas. Applied Ocean Research, 83, 3036.
Shen, HH and Ackley, SFA (1991) A one-dimensional model for wave-induced ice-floe collisions. Annals of Glaciology, 15(1), 8795.
Shen, HH and Squire, VA (1998) Wave damping in compact pancake ice fields due to interactions between pancakes. Antarctic Sea Ice: Physical Processes, Interactions, and Variability, 74, 325341.
Shen, HH, Hibler, WD and Leppäranta, M (1987) The role of floe collisions in sea ice rheology. Journal of Geophysical Research: Oceans, 92(C7), 70857096. doi: 10.1029/JC092iC07p07085
Shen, HH, Ackley, SF and Hopkins, MA (2001) A conceptual model for pancake-ice formation in a wave field. Annals of Glaciology, 33(2), 361367, doi: 10.3189/172756401781818239
Smith, M and Thomson, J (2019) Ocean surface turbulence in newly formed marginal ice zones. Journal of Geophysical Research: Oceans, 124(3), 13821398.
Smith, M and and 8 others (2018) Episodic reversal of autumn ice advance caused by release of ocean heat in the beaufort sea. Journal of Geophysical Research: Oceans, 123(5), 31643185. doi: 10.1002/2018JC013764
Squire, VA (2019) Ocean wave interactions with sea ice: A 2019 reappraisal. Annual Review of Fluid Mechanics, AA, 125.
Sutherland, G, Rabault, J, Christensen, KH and Jensen, A (2019) A two layer model for wave dissipation in sea ice. Applied Ocean Research, 88, 111118.
Thomson, J (2012) Wave breaking dissipation observed with SWIFT drifters. Journal of Atmospheric and Oceanic Technology, 29, 18661882. doi: 10.1175/JTECH-D-12-00018.1
Thomson, J and and 28 others (2018) Overview of the Arctic Sea State and Boundary Layer Physics Program. Journal of Geophysical Research: Oceans, 86748687. doi: 10.1002/2018JC013766
Toffoli, A and 6 others (2015) Sea ice floes dissipate the energy of steep ocean waves. Geophysical Research Letters, 42(20), 85478554.
Treshnikov, AF (1967) The ice of the southern ocean. Pacific Antarctic Sci., 11th Pacific Science Congress, Tokyo, Japan. pp. 113–123.
Voermans, JJ, Babanin, AV, Thomson, J, Smith, MM and Shen, HH (2019) Wave attenuation by sea ice turbulence. Geophysical Research Letters, 46, 67966803.
Wang, R and Shen, HH (2010) Gravity waves propagating into an ice-covered ocean: A viscoelastic model. Journal of Geophysical Research: Oceans, 115(C6), 112.
Yiew, L, Bennetts, L, Meylan, M, French, B and Thomas, G (2016) Hydrodynamic responses of a thin floating disk to regular waves. Ocean Modelling, 97, 5264.
Yiew, LJ, Bennetts, L, Meylan, M, Thomas, G and French, B (2017) Wave-induced collisions of thin floating disks. Physics of Fluids, 29(12), 127102.

Keywords

Type Description Title
PDF
Supplementary materials

Smith and Thomson supplementary material
Smith and Thomson supplementary material 1

 PDF (504 KB)
504 KB
VIDEO
Supplementary materials

Smith and Thomson supplementary material
Smith and Thomson supplementary material 2

 Video (12.1 MB)
12.1 MB
UNKNOWN
Supplementary materials

Smith and Thomson supplementary material
Smith and Thomson supplementary material 3

 Unknown (7 KB)
7 KB

Pancake sea ice kinematics and dynamics using shipboard stereo video

  • Madison Smith (a1) and Jim Thomson (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed