Skip to main content
×
×
Home

Reconstruction of three centuries of annual accumulation rates based on the record of stable isotopes of water from Lomonosovfonna, Svalbard

  • Veijo A. Pohjola (a1), Tõnu A. Martma (a2), Harro A. J. Meijer (a3), John C. Moore (a4), Elisabeth Isaksson (a5), Rein Vaikmäe (a2) and Roderik S.W. van de Wal (a6)...
Abstract

We use the upper 81 mof the record of stable isotopes of water from a 122m long ice core from Lomonosovfonna, central Spitsbergen, Svalbard, to construct an ice-core chronology and the annual accumulation rates over the icefield. the isotope cycles are counted in the ice-core record using a model that neglects short-wavelength and low-amplitude cycles. We find approximately the same number of δ18O cycles as years between known reference horizons, and assume these cycles represent annual cycles. Testing the validity of this assumption using cycles in δD shows that both records give similar numbers of cycles. Using the δ18O chronology, and decompressing the accumulation records using the Nye flow model, we calculate the annual accumulation for the ice-core site back to AD 1715. We find that the average accumulation rate from 1715 to 1950 was on average 0.30 mw.e. Accumulation rates increased about 25% during the later part of the 20th century to an average of 0.41 mw.e. for the period 1950–97. the accumulation rates show highly significant 2.1 and 21 year periodicities, which gives credibility to our time-scale.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Reconstruction of three centuries of annual accumulation rates based on the record of stable isotopes of water from Lomonosovfonna, Svalbard
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Reconstruction of three centuries of annual accumulation rates based on the record of stable isotopes of water from Lomonosovfonna, Svalbard
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Reconstruction of three centuries of annual accumulation rates based on the record of stable isotopes of water from Lomonosovfonna, Svalbard
      Available formats
      ×
Copyright
References
Hide All
Bolzan, J.F. and Pohjola, V.A.. 2000. Reconstruction of the undiffused seasonal oxygen isotope signal in central Greenland ice cores. J. Geophys. Res. , 105(C9), 22,095–22,106.
Bolzan, J.F. and Strobel, M.. 1994. Accumulation-rate variations around Summit, Greenland. J. Glaciol. , 40(134), 5666.
Dansgaard, W. and Johnsen, S.J.. 1969.A flow model and a time scale for the ice core from Camp Century, Greenland. J. Glaciol. , 8(53), 215223.
Eichler, A. and 7 others. 2000. Glaciochemical dating of an ice core from upper Grenzgletscher (4200ma.s.l.). J. Glaciol. , 46(154), 507515.
Hammer, C.U., Clausen, H. B., Dansgaard, W., Gundestrup, N., Johnsen, S. J. and Reeh, N.. 1978. Dating of Greenland ice cores by flow models, isotopes, volcanic debris, and continental dust. J. Glaciol. , 20(82), 326.
Hoffmann, G.,Werner, M. and Heimann, M.. 1998. Water isotope module of the ECHAM atmospheric general circulation model: a study on time-scales from days to several years. J. Geophys. Res. , 103(D14),16,871–16,896.
Isaksson, E. and 14 others. 2001. A new ice-core record from Lomonosovfonna, Svalbard: viewing the 1920–97 data in relation to present climate and environmental conditions. J. Glaciol. , 47(157), 335345.
Jevrejeva, S. and Moore, J.C.. 2001. Singular spectrum analysis of Baltic Sea ice conditions and large-scale atmospheric patterns since 1708. Geophys. Res. Lett., 28, 45034506.
Johnsen, S.J. 1977. Stable isotope homogenization of polar firn and ice. International Association of Hydrological Sciences Publication 118 (Symposium at Grenoble 1975−Isotopes and Impurities in Snow and Ice), 210219.
Johnsen, S.J.,Clausen, H.B., Cuffey, K.M.,Hoffmann, G., Schwander, J. and Creyts, T.. 2000. Diffusion of stable isotopes in polar firn and ice: the isotope effect in firn diffusion. In Hondoh, T., ed. Physics of ice core records. Sapporo, Hokkaido University Press, 121140.
Jouzel, J. and 12 others.1997. On the validity of the temperature reconstruction from water isotopes in ice cores. J. Geophys. Res. , 102(C12), 26,471–26,487.
Kekonen, T., Moore, J., Mulvaney, R., Isaksson, E., Pohjola, V. and van deWal, R. S.W.. 2002. An 800year record of nitrate from the Lomonosovfonnaice core, Svalbard. Ann. Glaciol. , 35 (see paper in this volume).
Koerner, R.M. 1977. Distribution of microparticles in a 299-m core through the Devon Island ice cap, Northwest Territories, Canada. International Association of Hydrological Sciences Publication 118 (Symposium at Grenoble 1975−Isotopes and Impurities in Snow and Ice), 371–376.
Koerner, R.M. 1997. Some comments on climatic reconstructions from ice cores drilled in areas of high melt. J. Glaciol. , 43(143), 9097. (Erratum: 43(144), p. 375–376.)
Legrand, M. and Mayewski, P.. 1997. Glaciochemistry of polar ice cores: a review. Rev. Geophys. , 35(3), 219243.
Meese, D.A. and 8 others. 1997.The Greenland Ice Sheet Project 2 depth–age scale: methods and results. J. Geophys. Res. , 102(C12), 26,411–26,423.
Nordli, P.Ä Hanssen-Bauer, I. and J. Førland, E.. 1996. Homogeneity analyses of temperature and precipitation series from Svalbard and Jan Mayen. Oslo, Det NorskeMeteorologiske Institutt. (DNMI Klima Report 16.)
Nye, J.F. 1963. Correction factor for accumulation measured by the thickness of the annual layers in an ice sheet. J. Glaciol. , 4(36),785788.
Pälli, A. and 6 others. In press. Spatial and temporal variability of snow accumulation using ground-penetrating radar and ice cores on a Svalbard glacier. J. Glaciol.
Paterson, W. S. B. 1994. The physics of glaciers. Third edition. Oxford, etc., Elsevier.
Pinglot, J.F. and 6 others. 1999. Investigations of temporal change of the accumulation in Svalbard glaciers deduced from nuclear tests and Chernobyl reference layers. Polar Res. , 18(2), 315321.
Pohjola, V.A. 2002. On the potential to retrieve climatic and environmental information from ice core sites suffering periodic melt, with specific assessment of the Southern Patagonia IceField. In Sepúlveda, F.,Casassa, G. and Sinclair, R.. eds. the Patagonia icefields: an unique natural laboratory. NewYork, KluwerAcademic/Plenum Publishers, 125–138125–138.
Pohjola, V.A. and 7 others. 2002. Effect of periodic melting on geochemical and isotopic signals in an ice core on Lomonosovfonna, Svalbard. J. Geophys. Res., 107(D4),114. (10.1029/2000JD000149.)
Press, W.H. Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P.. 1992. Numerical recipes in C: the art of scientific computing. Second edition. Cambridge, Cambridge University Press.
Raymond, C., Weertman, B., Thompson, L., Mosley-Thompson, E., Peel, D. and Mulvaney, B.. 1996. Geometry, motion and mass balance of Dyer Plateau, Antarctica. J. Glaciol. , 42(142), 510518.
Shuman, C.A., Alley, R.B., Anandakrishnan, S., White, J.W. C., Grootes, P. M. and Stearns, C.R.. 1995. Temperature and accumulation at the Greenland Summit: comparison of high-resolution isotope profiles and satellite passive microwave brightness temperature trends. J. Geophys. Res. , 100(D5), 91659177.
Thompson, D.W.J. and Wallace, J.W.. 1998. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. , 25(9),12971300.
Van de Wal, R. S.W. and 6 others. 2002. Reconstruction of the historical temperature trend from measurements in a medium-length borehole on the Lomonosovfonna plateau, Svalbard. Ann. Glaciol. , 35 (see paper in this volume).
Vautard, R., Yiou, P. and Ghil, M.. 1992. Singular-spectrumanalysis: a toolkit for short, noisy chaotic signals. Physica D , 58(1), 95126.
Whillans, I.M. and Grootes, P.M.. 1985. Isotopic diffusion in cold snow and firn. J. Geophys. Res. , 90(D2), 39103918.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 5
Total number of PDF views: 24 *
Loading metrics...

Abstract views

Total abstract views: 53 *
Loading metrics...

* Views captured on Cambridge Core between 14th September 2017 - 14th August 2018. This data will be updated every 24 hours.