Skip to main content
×
Home
    • Aa
    • Aa

Seasonal surface velocities of a Himalayan glacier derived by automated correlation of unmanned aerial vehicle imagery

  • Philip Kraaijenbrink (a1), Sander W. Meijer (a1), Joseph M. Shea (a2), Francesca Pellicciotti (a3), Steven M. De Jong (a1) and Walter W. Immerzeel (a1) (a2)...
Abstract.
Abstract.

Debris-covered glaciers play an important role in the high-altitude water cycle in the Himalaya, yet their dynamics are poorly understood, partly because of the difficult fieldwork conditions. In this study we therefore deploy an unmanned aerial vehicle (UAV) three times (May 2013, October 2013 and May 2014) over the debris-covered Lirung Glacier in Nepal. The acquired data are processed into orthomosaics and elevation models by a Structure from Motion workflow, and seasonal surface velocity is derived using frequency cross-correlation. In order to obtain optimal surface velocity products, the effects of different input data and correlator configurations are evaluated, which reveals that the orthomosaic as input paired with moderate correlator settings provides the best results. The glacier has considerable spatial and seasonal differences in surface velocity, with maximum summer and winter velocities 6 and 2.5 m a-1, respectively, in the upper part of the tongue, while the lower part is nearly stagnant. It is hypothesized that the higher velocities during summer are caused by basal sliding due to increased lubrication of the bed. We conclude that UAVs have great potential to quantify seasonal and annual variations in flow and can help to further our understanding of debris-covered glaciers.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Seasonal surface velocities of a Himalayan glacier derived by automated correlation of unmanned aerial vehicle imagery
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Seasonal surface velocities of a Himalayan glacier derived by automated correlation of unmanned aerial vehicle imagery
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Seasonal surface velocities of a Himalayan glacier derived by automated correlation of unmanned aerial vehicle imagery
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Correspondence: Philip Kraaijenbrink <p.d.a.kraaijenbrink@uu.nl>
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

D Benn and 10 others (2012) Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth Sci. Rev., 114(1-2), 156174 (doi: 10.1016/j.earscirev.2012.03.008)

T Bolch , T Pieczonka and D Benn (2011) Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. Cryosphere, 5(2), 349358 (doi: 10.5194/tc-S-349-2011)

T Bolch and 11 others (2012) The state and fate of Himalayan glaciers. Science, 336, 310314 (doi: 10.1126/science.121 5828)

L Copland and 8 others (2009) Glacier velocities across the central Karakoram. Ann. Claciol., 50(52), 41 (doi: 10.3189/172756409789624229)

J Gardelle , Berthier E , Y Arnaud and A Kääb (2013) Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011. Cryosphere Discuss., 7(2), 9751028 (doi: 10.5194/tc-7-1263-2013)

T Heid and A Kääb (2012) Repeat optical satellite images reveal widespread and long term decrease in land-terminating glacier speeds. Cryosphere, 6(2), 467478 (doi: 10.5194/tc-6-467-2012)

W Immerzeel , L Van Beek and M Bierkens (2010) Climate change will affect the Asian water towers. Science, 328(5984), 13821385 (doi: 10.1126/science.1183188)

W Immerzeel and 6 others (2014) High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles. Remote Sens. Environ., 150, 93103 (doi: 10.1016/j.rse.2014.04.025)

A Kääb (2005) Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya. Remote Sens. Environ., 94(4), 463474 (doi: 10.1016/j.rse.2004.11.003)

A Kääb , E Berthier , C Nuth , J Gardelle and Y Arnaud (2012) Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488(7412), 495498 (doi: 10.1038/nature11324)

G Kaser , M Grosshauser and B Marzeion (2010) Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl Acad. Sci. USA, 107, 2022320227 (doi: 10.1073/pnas.1008162107)

S Leprince , F Ayoub and JP Avouac (2007) Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans. Ceosci. Remote Sens., 45(6), 15291558 (doi: 10.1109/TGRS.2006.888937)

S Leprince , E Berthier , F Ayoub , C Delacourt and JJP Avouac (2008) Monitoring earth surface dynamics with optical imagery. Eos, 89(1) (doi: 10.1029/2008EO010001)

A Lucieer , S Jong and D Turner (2013) Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Progr. Phys. Ceogr., 38(1), 97116 (doi: 10.1177/0309133313515293)

AF Lutz , WW Immerzeel , AB Shrestha and MFP Bierkens (2014) Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation. Nature Climate Change, 4(June), 16 (doi: 10.1038/nclimate2237)

T Scambos , MJ Dutkiewicz , JC Wilson and RA Bindschadler (1992) Application of image cross-correlation to the measurement of glacier velocity using satellite image data. Remote Sens. Environ., 42(3), 177186 (doi: 10.1016/0034-4257(92)90101-O)

D Scherler , S Leprince and MR Strecker (2008) Glacier-surface velocities in alpine terrain from optical satellite imagery: accuracy improvement and quality assessment. Remote Sens. Environ., 112(10), 38063819 (doi: 10.1016/j.rse.2008.05.018)

D Scherler , B Bookhagen and MR Strecker (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geosci., 4(3), 156159 (doi: 10.1038/ngeoi068)

S Sugiyama , K Fukui , K Fujita , K Tone and S Yamaguchi (2013) Changes in ice thickness and flow velocity of Yala Glacier, Langtang Himal, Nepal, from 1982 to 2009. Ann. Claciol., 54(64), 157162 (doi: 10.3189/2013AoG64A111)

C Van der Veen (2013) Fundamentals of glacier dynamics, 2nd edn. CRC Press, Boca Raton, FL

MJ Westoby , J Brasington , NF Glasser , MJ Hambrey and JM Reynolds (2012) ‘Structure-from-Motion’ photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology, 179, 300314 (doi: 10.101 6/j.geomorph.2012.08.021)

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 181 *
Loading metrics...

Abstract views

Total abstract views: 281 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th September 2017. This data will be updated every 24 hours.