Skip to main content
×
×
Home

Subglacial hydrology at Rink Isbræ, West Greenland inferred from sediment plume appearance

  • Kristin M. Schild (a1), Robert L. Hawley (a1) and Blaine F. Morriss (a1)
Abstract
ABSTRACT

Marine-terminating outlet glaciers discharge most of the Greenland ice sheet's mass through frontal ablation and meltwater runoff. While calving can be estimated by in situ and remote sensing observations, submarine melting and subglacial meltwater transport are more challenging to quantify. Here we investigate the subglacial hydrology of Rink Isbræ, a fast-flowing West Greenland tidewater glacier, using time-lapse photography, modeled runoff estimates and daily satellite imagery from 2007 to 2011. We find that sediment plumes appear episodically at four distinct locations across the terminus, and last between 2 h and 17 d. This suggests short-term variability in discharge and the existence of persistent pathways. The seasonal onset of sediment plumes occurs before supraglacial lake drainages, shortly after the onset of runoff, and only after the wintertime ice mélange has begun disintegrating. Plumes were also visible after the cessation of runoff (23 ± 5 d), which is indicative of subglacial storage. The lack of either a seasonal velocity change or a correspondence between meltwater availability and plume occurrence suggests that the subglacial system persists in a state of inefficient drainage. Subglacial hydrology at tidewater glaciers is of critical importance in understanding dynamics at the ice front.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Subglacial hydrology at Rink Isbræ, West Greenland inferred from sediment plume appearance
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Subglacial hydrology at Rink Isbræ, West Greenland inferred from sediment plume appearance
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Subglacial hydrology at Rink Isbræ, West Greenland inferred from sediment plume appearance
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
Hide All
Ahn Y and Box JE (2010) Glacier velocities from time-lapse photos: technique development and first results from the Extreme Ice Survey (EIS) in Greenland. J. Glaciol., 56, 198 (doi: 10.3189/002214310793146313)
Alley RB and 5 others (1997) How glaciers entrain and transport basal sediment: physical constraints. Quat. Sci. Rev., 16(9), 10171038 (doi: 10.1016/S0277-3791(97)00034-6)
Amundson JA and 5 others (2010) Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland. J. Geophys. Res., 115(F01005) (doi: 10.1029/2009JF001405)
Andersen ML and 5 others (2011) Quantitative estimates of velocity sensitivity to surface melt variations at a large Greenland outlet glacier. J. Glaciol., 57(204) (doi: 10.3189/002214311797409785)
Andrews JT, Milliman JD, Jennings AE, Rynes N and Dwyer J (1994) Sediment thickness and Holocene glacial marine sedimentation-rates in 3 East Greenland fjords (ca. 68°N). J. Geol., 102, 669683
Bamber JL, van den Broeke M, Ettema J, Lenaerts J and Rignot E (2012) Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophys. Res. Lett., 39(19) (doi: 10.1029/2012GL052552)
Bartholomaus TC, Anderson RS and Anderson SP (2008) Response of glacier basal motion to transient water storage. Nat. Geosci., 1, 3337 (doi: 10.1038/ngeo.2007.52)
Benn DI and Evans DJA (2010) Glaciers and glaciation. Routledge, London, UK.
Boon S and Sharp M (2003) The role of hydrologically-driven ice fracture in drainage system evolution on an Arctic glacier. Geophys. Res. Lett., 30(18) (doi: 10.1029/2003GL018934)
Brugman MM (1986) Waterflow at the base of a surging glacier (PhD thesis, California Institute of Technology, Pasadena, California)
Catania GA and Neumann TA (2010) Persistent englacial drainage features in the Greenland ice sheet. Geophys. Res. Lett., 37(2) (doi: 10.1029/2009GL041108)
Cenedese C and Linden PF (2014) Entrainment in two coalescing axisymmetric turbulent plumes. J. Fluid Mech., 752 (doi: 10.1017/jfm.2014.389)
Chandler DM and 11 others (2013) Evolution of the subglacial drainage system beneath the Greenland ice sheet revealed by tracers. Nat. Geosci., 6, 195198 (doi: 10.1038/ngeo1737)
Chauché N and 8 others (2014) Ice-ocean interaction and calving front morphology at two west Greenland tidewater outlet glaciers. Cryosphere, 8, 14571468 (doi: 10.5194/tc-8-1457-2014)
Christoffersen P, O'Leary M, van Angelen JH and van den Broeke M (2012) Partitioning effects from ocean and atmosphere on the calving stability of Kangerdlugssuaq Glacier, East Greenland. Ann. Glaciol., 53(60) (doi: 10.3189/2012AoG60A087)
Chu VW and 5 others (2009) Sediment plume response to surface melting and supraglacial lake drainages on the Greenland ice sheet. J. Glaciol., 55(194), 10721082 (doi: 10.3189/002214309790794904)
Chu VW, Smith LC, Rennermalm AK, Forster RR and Box JE (2012) Hydrologic controls on coastal suspended sediment plumes around the Greenland ice sheet. Cryosphere, 6, 119 (doi: 10.5194/tc-6-1-2012)
Clarke GKC (2005) Subglacial processes. Annu. Rev. Earth Planet. Sci., 33, 247276 (doi: 10.1146/annurev.earth.33.092203.122621)
Colgan W and 7 others (2011) An increase in crevasse extent, West Greenland: hydrologic implications. Gephys. Res. Lett., 38(18) (doi: 10.1029/2011GL048491)
Collins DN (1990) Seasonal and annual variations of suspended sediment transport in meltwaters draining from an Alpine glacier. IAHS Publ, 193, 439446
Cowton T and 7 others (2013) Evolution of drainage system morphology at a land-terminating Greenlandic outlet glacier. J. Geophys. Res., 118, 2941 (doi: 10.1029/2012JF002540)
Cowton T, Slater D, Sole A, Goldberg D and Nienow P (2015) Modeling the impact of glacial runoff on fjord circulation and submarine melt rate using a new subgrid-scale parameterization for glacial plumes. J. Geophys. Res., 120, 796812 (doi: 10.1002/2014JC010324)
Das SB and 6 others (2008) Fracture propagation to the base of the Greenland ice sheet during supraglacial lake drainage. Science, 320, 778781 (doi: 10.1126/science.1153360)
Dow CF and 10 others (2015) Modeling of subglacial hydrological development following rapid supraglacial lake drainage. J. Geophys. Res., 120, 11271147 (doi: 10.1002/2014JF003333)
Doyle SH and 9 others (2013) Ice tectonic deformation during the rapid in situ drainage of a supraglacial lake on the Greenland ice sheet. Cryosphere, 7, 129140 (doi: 10.5194/tc-7-129-2013)
Ewert H and Dietrich AGR (2012) Volume and mass changes of the Greenland ice sheet inferred from ICESat and GRACE. J. Geodynam., 59–60, 111123 (doi: 10.1016/j.jog.2011.06.003)
Flowers GE (2015) Modelling water flow under glaciers and ice sheets. Proc. R. Soc. Lond. A, 471, 2176 (doi: 10.1098/vspa.2014.0907)
Hallet B, Hunter L and Bogen J (1996) Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications. Glob. Planet. Change, 12(1–4), 213235 (doi: 10.1016/0921-8181(95)00021-6)
Howat I, Box JE, Ahn Y, Herrington A and McFadden EM (2010) Seasonal variability in the dynamics of marine-terminating outlet glaciers in Greenland. J. Glaciol., 56, 601613 (doi: 10.3189/002214310793146232)
Howat IM, Negrete A and Smith BE (2014) The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets. Cryosphere, 8, 15091518 (doi: 10.5194/tc-8-1509-2014)
Iken A (1981) The effect of the subglacial water pressure on the sliding velocity of a glacier in an idealized numerical model. J. Glaciol., 27(97)
Jenkins A (1991) A one-dimensional model of ice shelf-ocean interaction. J. Geophys. Res., 96(C11), 2067120677 (doi: 10.1029/91JC01842)
Jenkins A (2011) Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. Am. Meteorol. Soc., 41(2), 22792294 (doi: 10.1175/JPO-D-11-03.1)
Joughin I and 6 others (2009) Basal conditions for Pine Island and Thwaites Glaciers, West Antarctica, determined using satellite and airborne data. J. Glaciol., 55(190), 245257 (doi: 10.3189/002214309788608705)
Kamb B (1987) Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. J. Geophys. Res., 92(B9), 90839100 (doi: 10.1029/JB092iB09p09083)
Kimura S, Holland PR and Jenkins A (2014) The effect of meltwater plumes on the melting of a vertical glacier face. Am. Meteorol. Soc., 44(12), 30993117 (doi: 10.1175/JPO-D-13-0219.1)
Lund-Hansen LC, Andersen TJ, Nielsen MH and Pejrup M (2010) Suspended matter, Chl-a, CDOM, Grain sizes, and optical properties in the Arctic fjord-type estuary, Kangerlussuaq, West Greenland during summer. Estuar. Coasts, 33(6), 14421451 (doi: 10.1007/s12237-010-9300-7)
McGrath D and 5 others (2010) Sediment plumes as a proxy for local ice-sheet runoff in Kangerlussuaq fjord, West Greenland. J. Glaciol., 56(199), 813821 (doi: 10.3189/002214310794457227)
Moon T and 6 others (2014) Distinct patterns of seasonal Greenland glacier velocity. Geophys. Res. Lett., 41, 72097216 (doi: 10.1002/2014GL061836)
Morriss BF and 7 others (2013) A ten-year record of supraglacial lake evolution and rapid drainage in West Greenland using an automated processing algorithm for multispectral imagery. Cryosphere, 7, 18691877 (doi: 10.5194/tcd-7-1869-2013)
Motyka RJ, Hunter L, Echelmeyer KA and Connor C (2003) Submarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, U.S.A. Ann. Glaciol., 36 (doi: 10.3189/172756403781816374)
Motyka RJ and 5 others (2011) Submarine melting of the 1985 Jakobshavn Isbræ floating tongue and the triggering of the current retreat. J. Geophys. Res., 116(F01007) (doi: 10.1029/2009JF001632)
Motyka RJ, Dryer WP, Amundson J, Truffer M and Fahnestock M (2013) Rapid submarine melting driven by subglacial discharge, LeConte Glacier, Alaska. Geophys. Res. Lett., 40, 16 (doi: 10.1002/grl.51011)
Nienow P, Hasholt B and Willis I (1998) Seasonal changes in the morphology of the subglacial drainage system, Haut Glacier D'Arolla, Switzerland. Earth Surf. Process. Landforms, 23, 825843
Nye JF (1969) A calculation on sliding of ice over a wavy surface using a Newtonian viscous approximation. Proc. R. Soc. Lond. A, 311, 445467
O'Leary M and Christoffersen P (2013) Calving on tidewater glaciers amplified by submarine frontal melting. Cryosphere, 7, 119128 (doi: 10.5194/tc-7-119-2013)
Rennermalm AK and 7 others (2013) Evidence of meltwater retention in the Greenland ice sheet. Cryosphere, 7(5), 14331445 (doi: 10.5194/tc-7-1433-2013)
Rignot E and Kanagaratnam P (2006) Changes in the velocity structure of the Greenland ice sheet. Science, 311(5673), 986990 (doi: 10.1126/science.1121381)
Rignot E, Koppes M and Velicogna I (2010) Rapid submarine melting of the calving faces of West Greenland glaciers. Nat. Geosci., 3 (doi: 10.1038/NGEO765)
Röthlisberger H (1972) Water pressure in intra- and subglacial channels. J. Glaciol., 11(62), 177203
Sasgen I and 8 others (2012) Timing and origin of recent regional ice-mass loss in Greenland. Earth Planet. Sci. Lett., 333, 293303 (doi: 10.1016/j.epsl.2012.03.033)
Schild KM and Hamilton GS (2013) Seasonal variations of outlet glacier terminus position in Greenland. J. Glaciol., 59(216) (doi: 10.3189/2013JoG12J238)
Schoof C (2010) Ice-sheet acceleration driven by melt supply variability. Nature, 468, 803806 (doi: 10.1038/nature0918)
Schrama EJO and Wouters B (2011) Revisiting Greenland ice sheet mass loss observed by GRACE. J. Geophys. Res., 116, B02407 (doi: 10.1029/2009JB006847)
Sciascia R, Straneo F, Cenedese C and Heimbach P (2013) Seasonal variability of submarine melt rate and circulation in an East Greenland fjord. J. Geophys. Res., 118, 24922505 (doi: 10.1002/jgrc.20142)
Selmes N, Murray T and James TD (2011) Fast draining lakes on the Greenland ice sheet. Geophys. Res. Lett., 38(L15501) (doi: 10.1029/2011GL047872)
Shepherd A and 46 others (2012) A reconciled estimate of ice-sheet mass balance. Science, 338(6111), 11831189 (doi: 10.1126/science.1228102)
Slater DA, Nienow PW, Cowton TR, Goldberg DN and Sole AJ (2015) Effect of near-terminus subglacial hydrology on tidewater glacier submarine melt rates. Geophys. Res. Lett., 42, 28612868 (doi: 10.1002/2014GL062494)
Sole AJ and 6 others (2011) Seasonal speedup of a Greenland marine-terminating outlet glacier forced by surface melt-induced changes in subglacial hydrology. J. Geophys. Res., 116(F03014) (doi: 10.1029/2010JF001948)
Stott TA and Grove JR (2001) Short-term discharge and suspended sediment fluctuations in the proglacial Skeldal River, north-east Greenland. Hydrol. Process., 15(3) (doi: 10.1002/hyp.156)
Straneo F and Heimbach P (2013) North Atlantic warming and the retreat of Greenland's outlet glaciers. Nature, 504 (doi: 10.1038/nature12854)
Straneo F and 6 others (2011) Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nat. Geosci., 4, 322327 (doi: 10.1038/ngeo1109)
Straneo F and 8 others (2012) Characteristics of ocean waters reaching Greenland's glaciers. Ann. Glaciol., 53(60), 202210 (doi: 10.3189/2012AoG60A059)
Sundal AV and 5 others (2011) Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage. Nature, 469, 521524 (doi: 10.1038/nature09740)
Sutherland DA and Straneo F (2012) Estimating ocean heat transports and submarine melt rates in Sermilik fjord, Greenland, using lowered acoustic Doppler current profiler (LADCP) velocity profiles. Ann. Glaciol., 53(60), 5058 (doi: 10.3189/2012AoG60A050)
Tedstone AJ and Arnold NS (2012) Automated remote sensing of sediment plumes for identification of runoff from the Greenland ice sheet. J. Glaciol., 58(210), 699712 (doi: 10.3189/2012JoG11J204)
van As D and 10 others (2014) Increasing meltwater discharge from the Nuuk region of the Greenland ice sheet and implications for mass balance (1960–2012). J. Glaciol., 60(220), 314322 (doi: 10.3189/2014JoG13J065)
Van den Broeke M and 8 others (2009) Partitioning recent Greenland mass loss. Science, 326, 984986 (doi: 10.1126/science.1178176)
Van der Veen CJ (2007) Fracture propagation as a means of rapidly transferring surface meltwater at the base of glaciers. Geophys. Res. Lett., 34(L01501) (doi: 10.1029/2006GL028385)
Van Meijgaard E and 6 others (2008) The KNMI regional atmospheric climate model RACMO version 2.1. KNMI Technical Report 302. Royal Netherlands Meteorological Institute, De Bilt, Netherlands, 43 pp.
Vieli A and Nick FM (2011) Understanding and modeling rapid dynamic changes of tidewater outlet glaciers: issues and implications. Surv. Geophys., 32, 437458 (doi: 10.1007/s10712-011-9132-4)
Walters RA, Josberger EG and Driedger CL (1988) Columbia Bay, Alaska: an ‘upside down’ estuary. Estuarine, Coastal Shelf Sci., 26(6), 607617 (doi: 10.1016/0272-7714(88)90037-6)
Xu Y, Rignot E, Menemenlis D and Koppes M (2012) Numerical experiments on subaqueous melting of Greenland tidewater glaciers in response to ocean warming and enhanced subglacial discharge. Ann. Glaciol., 53(60) (doi: 10.3189/2012AoG60A139)
Xu Y, Rignot E, Fenty I, Menemenlis D and Flexas MM (2013) Subaqueous melting of Store Glacier, west Greenland from three-dimensional, high-resolution numerical modeling and ocean observations. Geophys. Res. Lett., 40, 46484653 (doi: 10.1002/grl.50825)
Zwally HJ and 5 others (2002) Surface melt-induced acceleration of Greenland ice-sheet flow. Science, 297(218) (doi: 10.1126/science.1072708)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 44
Total number of PDF views: 211 *
Loading metrics...

Abstract views

Total abstract views: 1248 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 15th December 2017. This data will be updated every 24 hours.