Skip to main content
×
Home
    • Aa
    • Aa

Subglacial hydrology at Rink Isbræ, West Greenland inferred from sediment plume appearance

  • Kristin M. Schild (a1), Robert L. Hawley (a1) and Blaine F. Morriss (a1)
Abstract
ABSTRACT

Marine-terminating outlet glaciers discharge most of the Greenland ice sheet's mass through frontal ablation and meltwater runoff. While calving can be estimated by in situ and remote sensing observations, submarine melting and subglacial meltwater transport are more challenging to quantify. Here we investigate the subglacial hydrology of Rink Isbræ, a fast-flowing West Greenland tidewater glacier, using time-lapse photography, modeled runoff estimates and daily satellite imagery from 2007 to 2011. We find that sediment plumes appear episodically at four distinct locations across the terminus, and last between 2 h and 17 d. This suggests short-term variability in discharge and the existence of persistent pathways. The seasonal onset of sediment plumes occurs before supraglacial lake drainages, shortly after the onset of runoff, and only after the wintertime ice mélange has begun disintegrating. Plumes were also visible after the cessation of runoff (23 ± 5 d), which is indicative of subglacial storage. The lack of either a seasonal velocity change or a correspondence between meltwater availability and plume occurrence suggests that the subglacial system persists in a state of inefficient drainage. Subglacial hydrology at tidewater glaciers is of critical importance in understanding dynamics at the ice front.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Subglacial hydrology at Rink Isbræ, West Greenland inferred from sediment plume appearance
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Subglacial hydrology at Rink Isbræ, West Greenland inferred from sediment plume appearance
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Subglacial hydrology at Rink Isbræ, West Greenland inferred from sediment plume appearance
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
Hide All
T Cowton and 7 others (2013) Evolution of drainage system morphology at a land-terminating Greenlandic outlet glacier. J. Geophys. Res., 118, 2941 (doi: 10.1029/2012JF002540)

Y Ahn and JE Box (2010) Glacier velocities from time-lapse photos: technique development and first results from the Extreme Ice Survey (EIS) in Greenland. J. Glaciol., 56, 198 (doi: 10.3189/002214310793146313)

RB Alley and 5 others (1997) How glaciers entrain and transport basal sediment: physical constraints. Quat. Sci. Rev., 16(9), 10171038 (doi: 10.1016/S0277-3791(97)00034-6)

JA Amundson and 5 others (2010) Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland. J. Geophys. Res., 115(F01005) (doi: 10.1029/2009JF001405)

ML Andersen and 5 others (2011) Quantitative estimates of velocity sensitivity to surface melt variations at a large Greenland outlet glacier. J. Glaciol., 57(204) (doi: 10.3189/002214311797409785)

JT Andrews , JD Milliman , AE Jennings , N Rynes and J Dwyer (1994) Sediment thickness and Holocene glacial marine sedimentation-rates in 3 East Greenland fjords (ca. 68°N). J. Geol., 102, 669683

JL Bamber , M van den Broeke , J Ettema , J Lenaerts and E Rignot (2012) Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophys. Res. Lett., 39(19) (doi: 10.1029/2012GL052552)

TC Bartholomaus , RS Anderson and SP Anderson (2008) Response of glacier basal motion to transient water storage. Nat. Geosci., 1, 3337 (doi: 10.1038/ngeo.2007.52)

S Boon and M Sharp (2003) The role of hydrologically-driven ice fracture in drainage system evolution on an Arctic glacier. Geophys. Res. Lett., 30(18) (doi: 10.1029/2003GL018934)

GA Catania and TA Neumann (2010) Persistent englacial drainage features in the Greenland ice sheet. Geophys. Res. Lett., 37(2) (doi: 10.1029/2009GL041108)

C Cenedese and PF Linden (2014) Entrainment in two coalescing axisymmetric turbulent plumes. J. Fluid Mech., 752 (doi: 10.1017/jfm.2014.389)

DM Chandler and 11 others (2013) Evolution of the subglacial drainage system beneath the Greenland ice sheet revealed by tracers. Nat. Geosci., 6, 195198 (doi: 10.1038/ngeo1737)

N Chauché and 8 others (2014) Ice-ocean interaction and calving front morphology at two west Greenland tidewater outlet glaciers. Cryosphere, 8, 14571468 (doi: 10.5194/tc-8-1457-2014)

P Christoffersen , M O'Leary , JH van Angelen and M van den Broeke (2012) Partitioning effects from ocean and atmosphere on the calving stability of Kangerdlugssuaq Glacier, East Greenland. Ann. Glaciol., 53(60) (doi: 10.3189/2012AoG60A087)

VW Chu and 5 others (2009) Sediment plume response to surface melting and supraglacial lake drainages on the Greenland ice sheet. J. Glaciol., 55(194), 10721082 (doi: 10.3189/002214309790794904)

VW Chu , LC Smith , AK Rennermalm , RR Forster and JE Box (2012) Hydrologic controls on coastal suspended sediment plumes around the Greenland ice sheet. Cryosphere, 6, 119 (doi: 10.5194/tc-6-1-2012)

GKC Clarke (2005) Subglacial processes. Annu. Rev. Earth Planet. Sci., 33, 247276 (doi: 10.1146/annurev.earth.33.092203.122621)

W Colgan and 7 others (2011) An increase in crevasse extent, West Greenland: hydrologic implications. Gephys. Res. Lett., 38(18) (doi: 10.1029/2011GL048491)

T Cowton , D Slater , A Sole , D Goldberg and P Nienow (2015) Modeling the impact of glacial runoff on fjord circulation and submarine melt rate using a new subgrid-scale parameterization for glacial plumes. J. Geophys. Res., 120, 796812 (doi: 10.1002/2014JC010324)

SB Das and 6 others (2008) Fracture propagation to the base of the Greenland ice sheet during supraglacial lake drainage. Science, 320, 778781 (doi: 10.1126/science.1153360)

CF Dow and 10 others (2015) Modeling of subglacial hydrological development following rapid supraglacial lake drainage. J. Geophys. Res., 120, 11271147 (doi: 10.1002/2014JF003333)

SH Doyle and 9 others (2013) Ice tectonic deformation during the rapid in situ drainage of a supraglacial lake on the Greenland ice sheet. Cryosphere, 7, 129140 (doi: 10.5194/tc-7-129-2013)

GE Flowers (2015) Modelling water flow under glaciers and ice sheets. Proc. R. Soc. Lond. A, 471, 2176 (doi: 10.1098/vspa.2014.0907)

B Hallet , L Hunter and J Bogen (1996) Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications. Glob. Planet. Change, 12(1–4), 213235 (doi: 10.1016/0921-8181(95)00021-6)

I Howat , JE Box , Y Ahn , A Herrington and EM McFadden (2010) Seasonal variability in the dynamics of marine-terminating outlet glaciers in Greenland. J. Glaciol., 56, 601613 (doi: 10.3189/002214310793146232)

IM Howat , A Negrete and BE Smith (2014) The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets. Cryosphere, 8, 15091518 (doi: 10.5194/tc-8-1509-2014)

A Jenkins (1991) A one-dimensional model of ice shelf-ocean interaction. J. Geophys. Res., 96(C11), 2067120677 (doi: 10.1029/91JC01842)

I Joughin and 6 others (2009) Basal conditions for Pine Island and Thwaites Glaciers, West Antarctica, determined using satellite and airborne data. J. Glaciol., 55(190), 245257 (doi: 10.3189/002214309788608705)

B Kamb (1987) Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. J. Geophys. Res., 92(B9), 90839100 (doi: 10.1029/JB092iB09p09083)

LC Lund-Hansen , TJ Andersen , MH Nielsen and M Pejrup (2010) Suspended matter, Chl-a, CDOM, Grain sizes, and optical properties in the Arctic fjord-type estuary, Kangerlussuaq, West Greenland during summer. Estuar. Coasts, 33(6), 14421451 (doi: 10.1007/s12237-010-9300-7)

D McGrath and 5 others (2010) Sediment plumes as a proxy for local ice-sheet runoff in Kangerlussuaq fjord, West Greenland. J. Glaciol., 56(199), 813821 (doi: 10.3189/002214310794457227)

T Moon and 6 others (2014) Distinct patterns of seasonal Greenland glacier velocity. Geophys. Res. Lett., 41, 72097216 (doi: 10.1002/2014GL061836)

BF Morriss and 7 others (2013) A ten-year record of supraglacial lake evolution and rapid drainage in West Greenland using an automated processing algorithm for multispectral imagery. Cryosphere, 7, 18691877 (doi: 10.5194/tcd-7-1869-2013)

RJ Motyka , L Hunter , KA Echelmeyer and C Connor (2003) Submarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, U.S.A. Ann. Glaciol., 36 (doi: 10.3189/172756403781816374)

RJ Motyka and 5 others (2011) Submarine melting of the 1985 Jakobshavn Isbræ floating tongue and the triggering of the current retreat. J. Geophys. Res., 116(F01007) (doi: 10.1029/2009JF001632)

RJ Motyka , WP Dryer , J Amundson , M Truffer and M Fahnestock (2013) Rapid submarine melting driven by subglacial discharge, LeConte Glacier, Alaska. Geophys. Res. Lett., 40, 16 (doi: 10.1002/grl.51011)

P Nienow , B Hasholt and I Willis (1998) Seasonal changes in the morphology of the subglacial drainage system, Haut Glacier D'Arolla, Switzerland. Earth Surf. Process. Landforms, 23, 825843

JF Nye (1969) A calculation on sliding of ice over a wavy surface using a Newtonian viscous approximation. Proc. R. Soc. Lond. A, 311, 445467

M O'Leary and P Christoffersen (2013) Calving on tidewater glaciers amplified by submarine frontal melting. Cryosphere, 7, 119128 (doi: 10.5194/tc-7-119-2013)

AK Rennermalm and 7 others (2013) Evidence of meltwater retention in the Greenland ice sheet. Cryosphere, 7(5), 14331445 (doi: 10.5194/tc-7-1433-2013)

E Rignot and P Kanagaratnam (2006) Changes in the velocity structure of the Greenland ice sheet. Science, 311(5673), 986990 (doi: 10.1126/science.1121381)

E Rignot , M Koppes and I Velicogna (2010) Rapid submarine melting of the calving faces of West Greenland glaciers. Nat. Geosci., 3 (doi: 10.1038/NGEO765)

KM Schild and GS Hamilton (2013) Seasonal variations of outlet glacier terminus position in Greenland. J. Glaciol., 59(216) (doi: 10.3189/2013JoG12J238)

C Schoof (2010) Ice-sheet acceleration driven by melt supply variability. Nature, 468, 803806 (doi: 10.1038/nature0918)

EJO Schrama and B Wouters (2011) Revisiting Greenland ice sheet mass loss observed by GRACE. J. Geophys. Res., 116, B02407 (doi: 10.1029/2009JB006847)

R Sciascia , F Straneo , C Cenedese and P Heimbach (2013) Seasonal variability of submarine melt rate and circulation in an East Greenland fjord. J. Geophys. Res., 118, 24922505 (doi: 10.1002/jgrc.20142)

N Selmes , T Murray and TD James (2011) Fast draining lakes on the Greenland ice sheet. Geophys. Res. Lett., 38(L15501) (doi: 10.1029/2011GL047872)

A Shepherd and 46 others (2012) A reconciled estimate of ice-sheet mass balance. Science, 338(6111), 11831189 (doi: 10.1126/science.1228102)

DA Slater , PW Nienow , TR Cowton , DN Goldberg and AJ Sole (2015) Effect of near-terminus subglacial hydrology on tidewater glacier submarine melt rates. Geophys. Res. Lett., 42, 28612868 (doi: 10.1002/2014GL062494)

AJ Sole and 6 others (2011) Seasonal speedup of a Greenland marine-terminating outlet glacier forced by surface melt-induced changes in subglacial hydrology. J. Geophys. Res., 116(F03014) (doi: 10.1029/2010JF001948)

TA Stott and JR Grove (2001) Short-term discharge and suspended sediment fluctuations in the proglacial Skeldal River, north-east Greenland. Hydrol. Process., 15(3) (doi: 10.1002/hyp.156)

F Straneo and P Heimbach (2013) North Atlantic warming and the retreat of Greenland's outlet glaciers. Nature, 504 (doi: 10.1038/nature12854)

F Straneo and 6 others (2011) Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nat. Geosci., 4, 322327 (doi: 10.1038/ngeo1109)

F Straneo and 8 others (2012) Characteristics of ocean waters reaching Greenland's glaciers. Ann. Glaciol., 53(60), 202210 (doi: 10.3189/2012AoG60A059)

AV Sundal and 5 others (2011) Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage. Nature, 469, 521524 (doi: 10.1038/nature09740)

DA Sutherland and F Straneo (2012) Estimating ocean heat transports and submarine melt rates in Sermilik fjord, Greenland, using lowered acoustic Doppler current profiler (LADCP) velocity profiles. Ann. Glaciol., 53(60), 5058 (doi: 10.3189/2012AoG60A050)

AJ Tedstone and NS Arnold (2012) Automated remote sensing of sediment plumes for identification of runoff from the Greenland ice sheet. J. Glaciol., 58(210), 699712 (doi: 10.3189/2012JoG11J204)

D van As and 10 others (2014) Increasing meltwater discharge from the Nuuk region of the Greenland ice sheet and implications for mass balance (1960–2012). J. Glaciol., 60(220), 314322 (doi: 10.3189/2014JoG13J065)

M Van den Broeke and 8 others (2009) Partitioning recent Greenland mass loss. Science, 326, 984986 (doi: 10.1126/science.1178176)

CJ Van der Veen (2007) Fracture propagation as a means of rapidly transferring surface meltwater at the base of glaciers. Geophys. Res. Lett., 34(L01501) (doi: 10.1029/2006GL028385)

A Vieli and FM Nick (2011) Understanding and modeling rapid dynamic changes of tidewater outlet glaciers: issues and implications. Surv. Geophys., 32, 437458 (doi: 10.1007/s10712-011-9132-4)

RA Walters , EG Josberger and CL Driedger (1988) Columbia Bay, Alaska: an ‘upside down’ estuary. Estuarine, Coastal Shelf Sci., 26(6), 607617 (doi: 10.1016/0272-7714(88)90037-6)

Y Xu , E Rignot , D Menemenlis and M Koppes (2012) Numerical experiments on subaqueous melting of Greenland tidewater glaciers in response to ocean warming and enhanced subglacial discharge. Ann. Glaciol., 53(60) (doi: 10.3189/2012AoG60A139)

Y Xu , E Rignot , I Fenty , D Menemenlis and MM Flexas (2013) Subaqueous melting of Store Glacier, west Greenland from three-dimensional, high-resolution numerical modeling and ocean observations. Geophys. Res. Lett., 40, 46484653 (doi: 10.1002/grl.50825)

HJ Zwally and 5 others (2002) Surface melt-induced acceleration of Greenland ice-sheet flow. Science, 297(218) (doi: 10.1126/science.1072708)

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 38
Total number of PDF views: 195 *
Loading metrics...

Abstract views

Total abstract views: 1087 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th October 2017. This data will be updated every 24 hours.