Skip to main content

The supply of subglacial meltwater to the grounding line of the Siple Coast, West Antarctica

  • S.P. Carter (a1) and H.A. Fricker (a1)

Recent satellite studies have shown that active subglacial lakes exist under the Antarctic ice streams and persist almost to their grounding lines. When the lowest-lying lakes flood, the water crosses the grounding line and enters the sub-ice-shelf cavity. Modeling results suggest that this additional freshwater influx may significantly enhance melting at the ice-shelf base. We examine the spatial and temporal variability in subglacial water supply to the grounding lines of the Siple Coast ice streams, by combining estimates for lake volume change derived from Ice, Cloud and land Elevation Satellite (ICESat) data with a model for subglacial water transport. Our results suggest that subglacial outflow tends to concentrate towards six embayments in the Siple Coast grounding line. Although mean grounding line outflow is ~60m3 s–1 for the entire Siple Coast, maximum local grounding line outflow may temporarily exceed 300 m3 s–1 during the synchronized flooding of multiple lakes in a hydrologic basin. Variability in subglacial outflow due to subglacial lake drainage may account for a substantial portion of the observed variability in freshwater flux out of the Ross Ice Shelf cavity. The temporal variability in grounding line outflow results in a net reduction in long-term average melt rate, but temporary peak melting rates may exceed the long-term average by a factor of three.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The supply of subglacial meltwater to the grounding line of the Siple Coast, West Antarctica
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      The supply of subglacial meltwater to the grounding line of the Siple Coast, West Antarctica
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      The supply of subglacial meltwater to the grounding line of the Siple Coast, West Antarctica
      Available formats
Hide All
Anandakrishnan S and Alley RB (1997) Stagnation of Ice Stream C, West Antarctica by water piracy. Geophys. Res. Lett., 24(3), 265–268 (doi: 10.1029/96GL04016)
Beem LH, Jezek KC and Van der Veen CJ (2010) Basal melt rates beneath Whillans Ice Stream, West Antarctica. J. Glaciol., 56(198), 647–654 (doi: 10.3189/002214310793146241)
Bentley CR and Chang FK (1971) Geophysical exploration in Marie Byrd Land, Antarctica. In Crary AP ed. Antarctic snow and ice studies II. American Geophysical Union, Washington, DC, 1–38 (Antarctic Research Series 16)
Bentley CR and Ostenso NA (1961) Glacial and subglacial topography of West Antarctica. J. Glaciol., 3(29), 882–911
Bentley CR, Clough JW, Jezek KC and Shabtaie S (1979) Ice-thickness patterns and the dynamics of the Ross Ice Shelf, Antarctica. J. Glaciol., 24(90), 287–294
Bindschadler R. and 17 others (2011) Getting around Antarctica: new high-resolution mappings of the grounded and freely-floating boundaries of the Antarctic ice sheet created for the International Polar Year. Cryosphere, 5(3), 569–588 (doi: 10.5194/tc-5-569-2011)
Blankenship DD, Bentley CR, Rooney ST and Alley RB (1987) Till beneath Ice Stream B. 1. Properties derived from seismic travel times. J. Geophys. Res., 92(B9), 8903–8911
Blankenship DD and 9 others (2001) Geologic controls on the initiation of rapid basal motion for West Antarctic ice streams: a geophysical perspective including new airborne radar sounding and laser altimetry results. In The West Antarctic ice sheet: behavior and environment. American Geophysical Union, Washington, DC, 105–121 (Antarctic Research Series 77)
Brunt KM, Fricker HA, Padman L, Scambos TA and O’Neel S (2010) Mapping the grounding zone of Ross Ice Shelf, Antarctica, using ICESat laser altimetry. Ann. Glaciol., 51(55), 71–79 (doi: 10.3189/172756410791392790)
Carter SP, Blankenship DD, Young DA, Peters ME, Holt JW and Siegert MJ (2009) Dynamic distributed drainage implied by the flow evolution of the 1996–1998 Adventure Trench subglacial outburst flood. Earth Planet. Sci. Lett., 283(1–4), 24–37 (doi: 10.1016/j.epsl.2009.03.019)
Carter SP and 6 others (2011) Modeling 5 years of subglacial lake activity in the MacAyeal Ice Stream (Antarctica) catchment through assimilation of ICESat laser altimetry. J. Glaciol., 57(206), 1098–1112 (doi: 10.3189/002214311798843421)
Catania GA, Conway H, Raymond CF and Scambos TA (2006) Evidence for floatation or near floatation in the mouth of Kamb Ice Stream, West Antarctica, prior to stagnation. J. Geophys. Res., 111(F1), F01005 (doi: 10.1029/2005JF000355)
Catania GA, Hulbe CL and Conway HB (2010) Grounding-line basal melt rates determined using radar-derived internal stratigraphy. J. Glaciol., 56(197), 545–554
Catania GA, Hulbe CL, Conway HB, Scambos TA and Raymond CF (2012) Variability in the mass flux of the Ross Sea ice streams, Antarctica, over the last millennium. J. Glaciol., 58(210), 741– 752 (doi: 10.3189/2012JoG11J219)
Christoffersen P and Tulaczyk S (2003) Response of subglacial sediments to basal freeze-on: I. Theory and comparison to observations from beneath the West Antarctic ice sheet. J. Geophys. Res., 108(B4), 2222 (doi: 10.1029/2002JB001935)
De Angelis H and Skvarca P (2003) Glacier surge after ice shelf collapse. Science, 299(5612), 1560–1562
Dinniman MS, Klinck JM and Smith WO (2007) Influence of sea ice cover and icebergs on circulation and water mass formation in a numerical circulation model of the Ross Sea, Antarctica. J. Geophys. Res., 112(C11), C11013 (doi: 10.1029/2006JC004036)
Dupont TK and Alley RB (2005) Assessment of the importance of ice-shelf buttressing to ice-sheet flow. Geophys. Res. Lett., 32(4), L04503 (doi: 10.1029/2004GL022024)
Engelhardt H, Humphrey N, Kamb B and Fahnestock M (1990) Physical conditions at the base of a fast moving Antarctic ice stream. Science, 248(4951), 57–59 (doi: 10.1126/science.248. 4951.57)
Evatt GW, Fowler AC, Clark CD and Hulton NRJ (2006) Subglacial floods beneath ice sheets. Philos. Trans. R. Soc. London, Ser. A, 364(1844), 1769–1794 (doi: 10.1098/rsta.2006.1798)
Fox-Maule C, Purucker ME, Olsen N and Mosegaard K (2005) Heat flux anomalies in Antarctica revealed by satellite magnetic data. Science, 309(5733), 464–467 (doi: 10.1126/science.1106888)
Fricker HA and Scambos T (2009) Connected subglacial lake activity on lower Mercer and Whillans Ice Streams, West Antarctica, 2003–2008. J. Glaciol., 55(190), 303–315 (doi: 10.3189/002214309788608813)
Fricker HA, Scambos T, Bindschadler R and Padman L (2007) An active subglacial water system in West Antarctica mapped from space. Science, 315(5818), 1544–1548 (doi: 10.1126/science.1136897)
Fricker HA, Scambos T, Carter S, Davis C, Haran T and Joughin I (2010) Synthesizing multiple remote-sensing techniques for subglacial hydrologic mapping: application to a lake system beneath MacAyeal Ice Stream, West Antarctica. J. Glaciol., 56(196), 187–199 (doi: 10.3189/002214310791968557)
Goldberg DN, Holland DM and Schoof CG (2009) Grounding line movement and ice shelf buttressing in marine ice sheets. J. Geophys. Res., 114(F4), F04026 (doi: 10.1029/2008JF001227)
Gray L, Joughin I, Tulaczyk S, Spikes VB, Bindschadler R and Jezek K (2005) Evidence for subglacial water transport in the West Antarctic Ice Sheet through three-dimensional satellite radar interferometry. Geophys. Res. Lett., 32(3), L03501 (doi: 10.1029/2004GL021387)
Greischar L and Bentley CR (1980) Isostatic equilibrium grounding line between theWest Antarctic ice sheet and the Ross Ice Shelf. Nature, 283(5748), 651–654
Griggs JA and Bamber JL (2011) Antarctic ice-shelf thickness from satellite radar altimetry. J. Glaciol., 57(203), 485–498 (doi: 10.3189/002214311796905659)
Haran T, Bohlander J, Scambos T, Painter T and Fahnestock M (2006) MODIS mosaic of Antarctica (MOA) image map. National Snow and Ice Data Center, Boulder, CO. Digital media:
Holland DM and Jenkins A (1999) Modeling thermodynamic ice– ocean interactions at the base of an ice shelf. J. Phys. Oceanogr., 29(8), 1787–1800 (doi: 10.1175/1520-0485(1999)029<1787: MTIOIA>2.0.CO;2)
Holland DM, Jacobs SS and Jenkins A (2003) Modelling the ocean circulation beneath the Ross Ice Shelf. Antarct. Sci., 15(1), 13–23 (doi: 10.1017/S0954102003001019)
Holland PR (2008) A model of tidally dominated ocean processes near ice shelf grounding lines. J. Geophys. Res., 113(C11), C11002 (doi: 10.1029/2007JC004576)
Horgan HJ, Walker RT, Anandakrishnan S and Alley RB (2011) Surface elevation changes at the front of the Ross Ice Shelf: implications for basal melting. J. Geophys. Res., 116(C2), C02005 (doi: 10.1029/2010JC006192)
Jacobs SS, Hellmer HH, Doake CSM, Jenkins A and Frolich RM (1992) Melting of ice shelves and the mass balance of Antarctica. J. Glaciol., 38(130), 375–387
Jenkins A (2011) Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Oceanogr., 41(12), 2279–2294 (doi: 10.1175/JPO-D-11-03.1)
Jenkins A and Bombosch A (1995) Modeling the effects of frazil ice crystals on the dynamics and thermodynamics of ice shelf water plumes. J. Geophys. Res., 100(C4), 6967–6981
Jenkins A and 6 others (2010a) Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nature Geosci., 3(7), 468–472 (doi: 10.1038/ngeo890)
Jenkins A, Nicholls KW and Corr HFJ, (2010b) Observation and parameterization of ablation at the base of Ronne Ice Shelf, Antarctica. J. Phys. Oceanogr., 40(10), 2298–2312 (doi: 10.1175/2010JPO4317.1)
Joughin I, Tulaczyk S, Bindschadler RA and Price S (2002) Changes inWest Antarctic ice stream velocities: observation and analysis. J. Geophys. Res., 107(B11), 2289 (doi: 10.1029/2001JB001029)
Joughin I, MacAyeal DR and Tulaczyk S, (2004a) Basal shear stress of the Ross ice streams from control method inversions. J. Geophys. Res., 109(B9), B09405 (doi: 10.1029/2003JB002960)
Joughin I, Tulaczyk S, MacAyealDand Engelhardt H (2004b) Melting and freezing beneath the Ross ice streams, Antarctica. J. Glaciol., 50(168), 96–108 (doi: 10.3189/172756504781830295)
Le Brocq AM, Payne AJ and Vieli A (2010) An improved Antarctic dataset for high resolution numerical ice sheet models (ALBMAP v1). Earth Syst. Sci. Data, 2(2), 247–260 (doi: 10.5194/essdd-3-195-2010)
Lewis EL and Perkin RG (1986) Ice pumps and their rates. J. Geophys. Res., 91(C10), 11 756–11 762
Loose B, Schlosser P, Smethie WM and Jacobs S (2009) An optimized estimate of glacial melt from the Ross Ice Shelf using noble gases, stable isotopes, and CFC transient tracers. J. Geophys. Res., 114(C8), C08007 (doi: 10.1029/2008JC005048)
Lythe MB, Vaughan DG and BEDMAP consortium (2001) BEDMAP: a new ice thickness and subglacial topographic model of Antarctica. J. Geophys. Res., 106(B6), 11 335–11 351 (doi: 10.1029/2000JB900449)
MacAyeal DR (1984) Thermohaline circulation below the Ross Ice Shelf: a consequence of tidally induced vertical mixing and basal melting. J. Geophys. Res., 89(C1), 597–606
Motyka RJ, Hunter L, Echelmeyer KA and Connor C (2003) Submarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, U.S.A. Ann. Glaciol., 36, 57–65 (doi: 10.3189/172756403781816374)
Motyka RJ, Truffer M, Fahnestock M, Mortensen J, Rysgaard S and Howat I (2011) Submarine melting of the 1985 Jakobshavn Isbræ floating tongue and the triggering of the current retreat. J. Geophys. Res., 116(F1), F01007 (doi: 10.1029/2009JF001632)
Mueller RD, Padman L, Dinniman MS, Erofeeva SY, Fricker HA and King MA (2012) Impact of tide–topography interactions on basal melting of Larsen C Ice Shelf, Antarctica. J. Geophys. Res., 117(C5), C05005 (doi: 10.1029/2011JC007263)
Neal CS (1979) The dynamics of the Ross Ice Shelf revealed by radio echo-sounding. J. Glaciol., 24(90), 295–307
Nye JF (1976) Water flow in glaciers: jökulhlaups, tunnels and veins. J. Glaciol., 17(76), 181–207
Parizek BR, Alley RB and Hulbe CL (2003) Subglacial thermal balance permits ongoing grounding-line retreat along the Siple Coast of West Antarctica. Ann. Glaciol., 36, 251–256 (doi: 10.3189/172756403781816167)
Paterson WSB (1994) The physics of glaciers, 3rd edn. Elsevier, Oxford
Pattyn F (2008) Investigating the stability of subglacial lakes with a full Stokes ice-sheet model. J. Glaciol., 54(185), 353–361 (doi: 10.3189/002214308784886171)
Payne AJ, Vieli A, Shepherd A, Wingham DJ and Rignot E (2004) Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans. Geophys. Res. Lett., 31(23), L23401 (doi: 10.1029/2004GL021284)
Payne AJ, Holland PR, Shepherd AP, Rutt IC, Jenkins A and Joughin I (2007) Numerical modeling of ocean–ice interactions under Pine Island Bay’s ice shelf. J. Geophys. Res., 112(C10), C10019 (doi: 10.1029/2006JC003733)
Pritchard HD, Arthern RJ, Vaughan DG and Edwards LA (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature, 461(7266), 971–975 (doi: 10.1038/nature08471)
Pritchard HD, Ligtenberg SRM, Fricker HA, Vaughan DG, Van den Broeke MR and Padman L (2012) Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484(7395), 502–505 (doi: 10.1038/nature10968)
Quinn PF, Ostendorf B, Beven K and Tenhunen J (1998) Spatial and temporal predictions of soil moisture patterns and evaporative losses using TOPMODEL and the GASFLUX model for an Alaskan catchment. Hydrol. Earth Syst. Sci., 2(1), 51–64 (doi: 10.5194/hess-2-51-1998)
Retzlaff R, Lord N and Bentley CR (1993) Airborne-radar studies: Ice Streams A, B and C, West Antarctica. J. Glaciol., 39(133), 495–506
Rignot E and Jacobs SS (2002) Rapid bottom melting widespread near Antarctic ice sheet grounding lines. Science, 296(5575), 2020–2023 (doi: 10.1126/science.1070942)
Rignot E, Casassa G, Gogineni P, Krabill W, Rivera A and Thomas R (2004) Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys. Res. Lett., 31(18), L18401 (doi: 10.1029/2004GL020697)
Rignot E, Mouginot J and Scheuchl B, (2011a) Ice flow of the Antarctic Ice Sheet. Science, 333(6048), 1427–1430 (doi: 10.1126/science.1208336)
Rignot E, Mouginot J and Scheuchl B, (2011b) Antarctic grounding line mapping from differential satellite radar interferometry. Geophys. Res. Lett., 38(10), L10504 (doi: 10.1029/2011GL047109)
Scambos TA, Haran TM, Fahnestock MA, Painter TH and Bohlander J (2007) MODIS-based Mosaic of Antarctica (MOA) data sets: continent-wide surface morphology and snow grain size. Remote Sens. Environ., 111(2–3), 242–257 (doi: 10.1016/j.rse.2006.12.020)
Scambos TA, Berthier E and Shuman CA (2011) The triggering of subglacial lake drainage during rapid glacier drawdown: Crane Glacier, Antarctic Peninsula. Ann. Glaciol., 52(59), 74–82 (doi: 10.3189/172756411799096204)
Schoof C (2007) Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res., 112(F3), F03S28 (doi: 10.1029/2006JF000664)
Sergienko OV and Hulbe CL (2011) ‘Sticky spots’ and subglacial lakes under ice streams of the Siple Coast, Antarctica. Ann. Glaciol., 52(58), 18–22 (doi: 10.3189/172756411797252176)
Sergienko OV, MacAyeal DR and Bindschadler RA (2007) Causes of sudden, short-term changes in ice-stream surface elevation. Geophys. Res. Lett., 34(22), L22503 (doi: 10.1029/2007GL031775)
Shapiro NM and Ritzwoller MH (2004) Inferring surface heat flux distribution guided by a global seismic model: particular application to Antarctica. Earth Planet. Sci. Lett., 223(1–2), 213–224 (doi: 10.1016/j.epsl.2004.04.011)
Shreve RL (1972) Movement of water in glaciers. J. Glaciol., 11(62), 205–214
Shuman CA, Berthier E and Scambos TA (2011) 2001–2009 elevation and mass losses in the Larsen A and B embayments, Antarctic Peninsula. J. Glaciol., 57(204), 737–754 (doi: 10.3189/002214311797409811)
Smith BE, Fricker HA, Joughin IR and Tulaczyk S (2009) An inventory of active subglacial lakes in Antarctica detected by ICESat (2003–2008). J. Glaciol., 55(192), 573–595 (doi: 10.3189/002214309789470879)
Tabacco E, Cianfarra P, Forieri A, Salvini F and Zirizzotti A (2006) Physiography and tectonic setting of the subglacial lake district between Vostok and Belgica subglacial highlands (Antarctica). Geophys. J. Int., 165(3), 1029–1040 (doi: 10.1111/j.1365-246X.2006.02954.x)
Thomas RH and Bentley CR (1978) The equilibrium state of the eastern half of the Ross Ice Shelf, Antactica. J. Glaciol., 20(84), 509–518
Tulaczyk SM, Kamb B and Engelhardt HF (2000) Basal mechanics of Ice Stream B, West Antarctica. II. Undrained-plastic-bed model. J. Geophys. Res., 105(B1), 483–494 (doi: 10.1029/1999JB900328)
Weertman J (1974) Stability of the junction of an ice sheet and an ice shelf. J. Glaciol., 13(67), 3–11
Wright AP, Siegert MJ, Le Brocq AM and Gore DB (2008) High sensitivity of subglacial hydrological pathways in Antarctica to small ice-sheet changes. Geophys. Res. Lett., 35(17), L17504 (doi: 10.1029/2008GL034937)
Zwally HJ and 7 others (2005) Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. J. Glaciol., 51(175), 509–527 (doi: 10.3189/172756505781829007)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 13 *
Loading metrics...

Abstract views

Total abstract views: 29 *
Loading metrics...

* Views captured on Cambridge Core between 18th September 2017 - 18th December 2017. This data will be updated every 24 hours.