Skip to main content
×
×
Home

Surface mass balance, ice velocity and near-surface ice temperature on Qaanaaq Ice Cap, northwestern Greenland, from 2012 to 2016

  • Shun Tsutaki (a1) (a2), Shin Sugiyama (a1), Daiki Sakakibara (a1) (a3), Teruo Aoki (a4) (a5) and Masashi Niwano (a5)...
Abstract

To better understand the processes controlling recent mass loss of peripheral glaciers and ice caps in northwestern Greenland, we measured surface mass balance (SMB), ice velocity and near-surface ice temperature on Qaanaaq Ice Cap in the summers of 2012–16. The measurements were performed along a survey route spanning the terminus of an outlet glacier to the upper reaches (243–968 m a.s.l.). The ice-cap-wide SMB ranged from −1.10 ± 0.29 to −0.13 ± 0.26 m w.e. a−1 for the years from 2012/13 to 2015/16. Mass balance showed substantially large fluctuations over the study period under the influence of summer temperature and snow accumulation. Ice velocity showed seasonal speedup only in the summer of 2012, suggesting an extraordinary amount of meltwater penetrated to the bed and enhanced basal ice motion. Ice temperature at a depth of 13 m was −8.0°C at 944 m a.s.l., which was 2.5°C warmer than that at 243 m a.s.l., suggesting that ice temperature in the upper reaches was elevated by refreezing and percolation of meltwater. Our study provided in situ data from a relatively unstudied region in Greenland, and demonstrated the importance of continued monitoring of these processes for longer timespans in the future.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Surface mass balance, ice velocity and near-surface ice temperature on Qaanaaq Ice Cap, northwestern Greenland, from 2012 to 2016
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Surface mass balance, ice velocity and near-surface ice temperature on Qaanaaq Ice Cap, northwestern Greenland, from 2012 to 2016
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Surface mass balance, ice velocity and near-surface ice temperature on Qaanaaq Ice Cap, northwestern Greenland, from 2012 to 2016
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
Hide All
Abermann J, van As D, Petersen D and Nauta M (2014) C31B-0281 a new glacier monitoring site in West Greenland. In 2014 Fall Meeting, AGU, San Francisco, CA, 1519 December
Aoki T, Matoba S, Uetake J, Takeuchi N and Motoyama H (2014) Field activities of the “Snow Impurity and Glacial Microbe effects on abrupt warming in the Arctic” (SIGMA) Project in Greenland in 2011–2013. Bull. Glaciol. Res., 32, 320 (doi: 10.5331/bgr.32.3)
Bahr DB, Dyurgerov M and Meier MF (2009) Sea-level rise from glaciers and ice caps: a lower bound. Geophys. Res. Lett., 36(3), L03501 (doi: 10.1029/2008GL036309)
Bales RC and 8 others (2009) Annual accumulation for Greenland updated using ice core data developed during 2000–2006 and analysis of daily coastal meteorological data. J. Geophys. Res., 114(D6), D06116 (doi: 10.1029/2008JD011208)
Bauer A (1961) Précision des mesures d'ablation. In General Assembly of Helsinki 1960 – snow and ice, vol. 54. International Association of Scientific Hydrology, Wallingford, Oxfordshire, UK
Bezeau P, Sharp M, Burgess D and Gascon G (2013) Firn profile changes in response to extreme 21st-century melting at Devon Ice Cap, Nunavut, Canada. J. Glaciol., 59(217), 981991 (doi: 10.3189/2013JoG12J208)
Bingham RG, Nienow PW and Sharp MJ (2003) Intra-annual and intra-seasonal flow dynamics of a High Arctic polythermal valley glacier. Ann. Glaciol., 37(1), 181188 (doi: 10.3189/172756403781815762)
Bingham RG, Nienow PW, Sharp MJ and Boon S (2005) Subglacial drainage processes at a High Arctic polythermal valley glacier. J. Glaciol., 51(172), 1524 (doi: 10.3189/172756505781829520)
Bingham RG, Hubbard AL, Nienow PW and Sharp MJ (2008) An investigation into the mechanisms controlling seasonal speed-up events at a High Arctic glacier. J. Geophys. Res., 113(F2), F02006 (doi: 10.1029/2007JF000832)
Blatter H and Hutter K (1991) Polythermal conditions in Arctic glaciers. J. Glaciol., 37(126), 261269 (doi: 10.3198/1991JoG37-126-261-269)
Bolch T and 6 others (2013) Mass loss of Greenland's glaciers and ice caps 2003–2008 revealed from ICESat laser altimetry data. Geophys. Res. Lett., 40(5), 875881 (doi: 10.1002/grl.50270)
Box JE, Yang L, Bromwich DH and Bai LS (2009) Greenland ice sheet surface air temperature variability: 1840–2007. J. Clim., 22(14), 40294049 (doi: 10.1175/2009JCLI2816.1)
Braithwaite RJ (1986) Assessment of mass-balance variations within a sparse stake network, Qamanarssup Sermia, West Greenland. J. Glaciol., 32(110), 5153
Cogley JG, Adams WP, Ecclestone MA, Jung-Rothenhäusler F and Ommanney CSL (1996) Mass balance of White Glacier, Axel Heiberg Island, N.W.T., Canada, 1960–91. J. Glaciol., 42(142), 548563
Cox C, Humphrey N and Harper J (2015) Quantifying meltwater refreezing along a transect of sites on Greenland ice sheet. Cryosphere, 9(2), 691701 (doi: 10.5194/tc-9-691-2015)
Den Ouden MAG and 5 others (2010) Stand-alone single-frequency GPS ice velocity observations on Nordenskiöldbreen, Svalbard. Cryosphere, 4(4), 593604 (doi: 10.5194/tc-4-593-2010)
Dyurgerov M, Meier MF and Bahr DB (2009) A new index of glacier area change; a tool for glacier monitoring. J. Glaciol., 55(192), 710716 (doi: 10.3189/002214309789471030)
Fischer A (2011) Comparison of direct and geodetic mass balances on a multi-annual time scale. Cryosphere, 5(1), 107124 (doi: 10.5194/tc-5-107-2011)
Fitzpatrick AAW and 6 others (2013) Ice flow dynamics and surface meltwater flux at the land-terminating margin of the west Greenland Ice Sheet. J. Glaciol., 59(216), 687696 (doi: 10.3189/2013JoG12J143)
Fristrup B (1960) Studies of four glaciers in Greenland. Geografisk Tidsskrift, 59, 89102
Gardner AS and 7 others (2011) Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago. Nature, 473(7347), 357360 (doi: 10.1038/nature10089)
Gardner AS and 15 others (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340(6134), 852857 (doi: 10.1126/science.1234532)
Gascon G, Sharp M, Burgess D, Bezeau P and Bush ABG (2013) Changes in accumulation-area firn stratigraphy and meltwater flow during a period of climate warming: Devon Ice Cap, Nunavut, Canada. J. Geophys. Res. Earth Surf., 118(4), 23802391 (doi: 10.1002/2013JF002838)
Hall DK, Comiso JC and DiGirolamo NE (2013) Variability in the surface temperature and melt extent of the Greenland ice sheet from MODIS. Geophys. Res. Lett., 40(10), 21142120 (doi: 10.1002/grl.50240)
Hanna E, Mernild SH, Cappelen J and Steffen K (2012) Recent warming in Greenland in a long-term instrumental (1881–2012) climate context. I. Evaluation of surface air temperature records. Environ. Res. Lett., 7(4), 045404 (doi: 10.1088/1748-9326/7/4/045404)
Hawley RL and 6 others (2014) Recent accumulation variability in northwest Greenland from ground-penetrating radar and shallow cores along the Greenland Inland Traverse. J. Glaciol., 60(220), 375382 (doi: 10.3189/2014JoG13J141)
Howat IM, Negrete A and Smith BE (2014) The Greenland Ice Mapping Project (GIMP) land classification and surface elevation datasets. Cryosphere, 8(4), 15091518 (doi: 10.5194/tc-8-1509-2014)
Hynek B, Weyss G, Binder D and Schöner W (2013) Mass balance monitoring on Freya Glacier. In Jensen LM, Rasch M and Schmidt NM eds. Zackenberg ecological research operations 18th annual report, 2012. Aarhus University, DCE – Danish Centre for Environment and Energy, Denmark, 7577
Jones HG, Pomeroy JW, Walker DA and Hoham RW (2001) Snow ecology: an interdisciplinary examination of snow-covered ecosystems. Cambridge University Press, Cambridge
Joughin I and 5 others (2008) Seasonal Speedup along the western flank of the Greenland Ice Sheet. Science, 320(5877), 781783 (doi: 10.1126/science.1153288)
Kjær KH and 13 others (2012) Aerial photographs reveal late-20th-century dynamic ice loss in northwestern Greenland. Science, 337(6094), 569573 (doi: 10.1126/science.1220614)
Machguth H and 31 others (2016) Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers. J. Glaciol., 62(235), 861887 (doi: 10.1017/jog.2016.75)
Meier MF and 7 others (2007) Glaciers dominate eustatic sea-level rise in the 21st century. Science, 317(5841), 10641067 (doi: 10.1126/science.1143906)
Mernild SH and Liston GE (2010) The influence of air temperature inversion on snow melt and glacier surface mass-balance simulations, SW Ammassalik Island, SE Greenland. J. Appl. Meteorol. Clim., 49(1), 4767 (doi: 10.1175/2009JAMC2065.1)
Mernild SH and 6 others (2011) Increasing mass loss from Greenland's Mittivakkat Gletscher. Cryosphere, 5(2), 341348 (doi: 10.5194/tc-5-341-2011)
Mernild SH and 7 others (2013) Volume and velocity changes at Mittivakkat Gletscher, southeast Greenland. J. Glaciol., 59(216), 660670 (doi: 10.3189/2013JoG13J017)
Mernild SH, Hanna E, Yde JC, Cappelen J and Malmros JK (2014) Coastal Greenland air temperature extremes and trends 1890–2010: annual and monthly analysis. Int. J. Climatol., 34(5), 14721487 (doi: 10.1002/joc.3777)
Nagatsuka N and 6 others (2016) Variations in Sr and Nd isotopic ratios of mineral particles in Cryoconite in western Greenland. Front. Earth Sci., 4, 93 (doi: 10.3389/feart.2016.00093)
Nghiem SV and 8 others (2012) The extreme melt across the Greenland ice sheet in 2012. Geophys. Res. Lett., 39(20), L20502 (doi: 10.1029/2012GL053611)
Niwano M and 6 others (2015) Numerical simulation of extreme snowmelt observed at the SIGMA-A site, northwest Greenland, during summer 2012. Cryosphere, 9(3), 971988 (doi: 10.5194/tc-9-971-2015)
Palmer SJ, Shepherd A, Sundal A, Rinne E and Nienow P (2010) InSAR observations of ice elevation and velocity fluctuations at the Flade Isblink ice cap, eastern North Greenland. J. Geophys. Res., 115(F4), F04037 (doi: 10.1029/2010JF001686)
Pattyn F, Nolan M, Rabus B and Takahashi S (2005) Localized basal motion of a polythermal Arctic glacier: McCall Glacier, Alaska, USA. Ann. Glaciol., 40(1), 4751 (doi: 10.3189/172756405781813537)
Rastner P and 5 others (2012) The first complete inventory of the local glaciers and ice caps on Greenland. Cryosphere, 6(6), 14831495 (doi: 10.5194/tc-6-1483-2012)
Redpath TAN, Sirguey P, Fitzsimons SJ and Kääb A (2013) Accuracy assessment for mapping glacier flow velocity and detecting flow dynamics from ASTER satellite imagery: Tasman Glacier, New Zealand. Remote Sens. Environ., 133, 90101 (doi: 10.1016/j.rse.2013.02.008)
Reijmer CH and Hock R (2008) Internal accumulation on Storglaciären, Sweden, in a multi-layer snow model coupled to a distributed energy-and mass-balance model. J. Glaciol., 54(184), 6172 (doi: 10.3189/002214308784409161)
Reijmer CH, van den Broeke MR, Fettweis X, Ettema J and Stap LB (2012) Refreezing on the Greenland ice sheet: a comparison of parameterizations. Cryosphere, 6(4), 743762 (doi: 10.5194/tc-6-743-2012, 2012)
Saito J, Sugiyama S, Tsutaki S and Sawagaki T (2016) Surface elevation change on ice caps in the Qaanaaq region, northwestern Greenland. Polar Sci., 10(3), 239248 (doi: 10.1016/j.polar.2016.05.002)
Schäfer M and 8 others (2012) Sensitivity of basal conditions in an inverse model: Vestfonna ice cap, Nordaustlandet/Svalbard. Cryosphere, 6(4), 771783 (doi: 10.5194/tc-6-771-2012)
Schoof C (2010) Ice-sheet acceleration driven by melt supply variability. Nature, 468(7325), 803806 (doi: 10.1038/nature09618)
Sole A and 6 others (2013) Winter motion mediates dynamic response of the Greenland Ice Sheet to warmer summers. Geophys. Res. Lett., 40(15), 39403944 (doi: 10.1002/grl.50764)
Steffen K and Box J (2001) Surface climatology of the Greenland ice sheet: Greenland climate network 1995–1999. J. Geophys. Res., 106(D24), 3395133964 (doi: 10.1029/2001JD900161)
Sugiyama S and 5 others (2014) Initial field observation on Qaanaaq ice cap, northwestern Greenland. Ann. Glaciol., 55(66), 2533 (doi: 10.3189/2014AoG66A102)
Sugiyama S, Sakakibara D, Tsutaki S, Maruyama M and Sawagaki T (2015) Glacier dynamics near the calving front of Bowdoin Glacier, northwestern Greenland. J. Glaciol., 61(226), 223232 (doi: 10.3189/2015JoG14J127)
Takeuchi N, Nagatsuka N, Uetake J and Shimada R (2014) Spatial variations in impurities (cryoconite) on glaciers in northwestern Greenland. Bull. Glaciol. Res., 32, 8594 (doi: 10.5331/bgr.32.85)
Tedstone A and 5 others (2015) Decadal slowdown of a land-terminating sector of the Greenland Ice Sheet despite warming. Nature, 526(7575), 692695 (doi: 10.1038/nature15722)
Tsutaki S, Sugiyama S, Sakakibara D and Sawagaki T (2016) Surface elevation changes during 2007–13 on Bowdoin and Tugto Glaciers, northwestern Greenland. J. Glaciol., 62(236), 10831092 (doi: 10.1017/jog.2016.106)
Uetake J and 6 others (2016) Microbial community variation in cryoconite granules on Qaanaaq Glacier, NW Greenland. FEMS Microbiol. Ecol., 92, fiw127 (doi: 10.1093/femsec/fiw127)
Van As D, Fausto RS and PROMICE Project Team (2011) Programme for Monitoring of the Greenland Ice Sheet (PROMICE): first temperature and ablation records. Geol. Surv. Denmark Greenland Bull., 23, 7376
Van de Wal RSW and 6 others (2008) Large and rapid melt-induced velocity changes in the ablation zone of the Greenland Ice Sheet. Science, 321(5885), 111113 (doi: 10.1126/science.1158540)
Van de Wal RSW and 10 others (2015) Self-regulation of ice flow varies across the ablation area in south-west Greenland. Cryosphere, 9(2), 603611 (doi: 10.5194/tc-9-603-2015)
Van Pelt WJJ and 5 others (2012) Simulating melt, runoff and refreezing on Nordenskiöldbreen, Svalbard, using a coupled snow and energy balance model. Cryosphere, 6(3), 641659 (doi: 10.5194/tc-6-641-2012)
Van Pelt WJJ and Kohler J (2015) Modelling the long-term mass balance and firn evolution of glaciers around Kongsfjorden, Svalbard. J. Glaciol., 61(228), 731744 (doi: 10.3189/2015JoG14J223)
Van Pelt WJJ, Pohjola VA and Reijmer CH (2016) The changing impact of snow conditions and refreezing on the mass balance of an idealized Svalbard Glacier. Front. Earth Sci., 4, 102 (doi: 10.3389/feart.2016.00102)
Watanabe O and 7 others (2001) Studies on climatic and environmental changes during the last few hundred years using ice cores from various sites in Nordaustlandet, Svalbard. Mem. Natl. Inst. Polar Res., Spec. Issue, 54, 22242
Wohlleben T, Sharp M and Bush A (2009) Factors influencing the basal temperatures of a High Arctic polythermal glacier. Ann. Glaciol., 50(52), 916 (doi: 10.3189/172756409789624210)
Wong GJ and 5 others (2015) Coast-to-interior gradient in recent northwest Greenland precipitation trends (1952–2012). Environ. Res. Lett., 10(11), 114008 (doi: 10.1088/1748-9326/10/11/114008)
Yde JC and 7 others (2014) Volume measurements of Mittivakkat Gletscher, southeast Greenland. J. Glaciol., 60(224), 11991207 (doi: 10.3189/2013JoG13J017)
Zdanowicz C and 6 others (2012) Summer melt rates on Penny Ice Cap, Baffin Island: past and recent trends and implications for regional climate. J. Geophys. Res., 117(F2), F02006 (doi: 10.1029/2011JF002248)
Zwally HJ and 5 others (2002) Surface melt-induced acceleration of Greenland ice sheet flow. Science, 297(5579), 218222 (doi: 10.1126/science.1072708)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 26
Total number of PDF views: 327 *
Loading metrics...

Abstract views

Total abstract views: 679 *
Loading metrics...

* Views captured on Cambridge Core between 15th May 2017 - 24th February 2018. This data will be updated every 24 hours.