Skip to main content
×
Home
    • Aa
    • Aa

Testing the effect of water in crevasses on a physically based calving model

  • S. Cook (a1), T. Zwinger (a2), I.C. Rutt (a1), S. O'Neel (a3) and T. Murray (a1)...
Abstract
Abstract

A new implementation of a calving model, using the finite-element code Elmer, is presented and used to investigate the effects of surface water within crevasses on calving rate. For this work, we use a two-dimensional flowline model of Columbia Glacier, Alaska. Using the glacier’s 1993 geometry as a starting point, we apply a crevasse-depth calving criterion, which predicts calving at the location where surface crevasses cross the waterline. Crevasse depth is calculated using the Nye formulation. We find that calving rate in such a regime is highly dependent on the depth of water in surface crevasses, with a change of just a few metres in water depth causing the glacier to change from advancing at a rate of 3.5 kma–1 to retreating at a rate of 1.9 km a–1. These results highlight the potential for atmospheric warming and surface meltwater to trigger glacier retreat, but also the difficulty of modelling calving rates, as crevasse water depth is difficult to determine either by measurement in situ or surface mass-balance modelling.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Abstract views

Total abstract views: 1 *
Loading metrics...

* Views captured on Cambridge Core between 14th September 2017 - 21st September 2017. This data will be updated every 24 hours.