Skip to main content
×
×
Home

Water content estimates of a first-year sea-ice pressure ridge keel from surface-nuclear magnetic resonance tomography

  • André Nuber (a1), Lasse Rabenstein (a1), Jochen A. Lehmann-Horn (a1), Marian Hertrich (a1), Stefan Hendricks (a2), Andy Mahoney (a3) and Hajo Eicken (a3)...
Abstract

The porosity of a sea-ice pressure ridge keel is an important but poorly known variable, relevant for determining the mass budget and evolution of the Arctic sea-ice cover. Determination of keel porosity from drillholes is time-intensive and only yields limited information because of their limited lateral extent. Since the porosity within a keel equals its liquid water content, surface-nuclear magnetic resonance (surface-NMR) methods can be used to estimate porosity within such features. Surface-NMR tomography measurements were made in April 2011 using seven surface coil positions across a first-year pressure ridge on landfast sea ice near Barrow, Alaska, USA. The inversion results indicate water contents of 30 ± 7% and 40 ±10% in the ridge’s shallow and deep parts, respectively. These values are much higher than those obtained from drillholes, which are ∼10% and ∼27%, respectively. In contrast to drilling, surface-NMR tomography yields average porosity values for the entire subsurface volume. However, the inversion process is sensitive to the electrical conductivity distribution; uncertain conductivity estimates limit the reliability of the inverted water contents. Nevertheless, the results suggest that ridge porosities obtained from invasive measurements such as drilling may lead to substantially overestimated sea-ice volume.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Water content estimates of a first-year sea-ice pressure ridge keel from surface-nuclear magnetic resonance tomography
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Water content estimates of a first-year sea-ice pressure ridge keel from surface-nuclear magnetic resonance tomography
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Water content estimates of a first-year sea-ice pressure ridge keel from surface-nuclear magnetic resonance tomography
      Available formats
      ×
Copyright
References
Hide All
Aster, R, Borchers, B and Thurbur, C (2005) Parameter estimation and inverse problems. Elsevier, Oxford
Bock, C and Eicken, H (2005) A magnetic resonance study of temperature-dependent microstructural evolution and self-diffusion of water in Arctic first-year sea ice. Ann. Glaciol., 40, 179184 (doi: 10.3189/172756405781813645)
Callaghan, PT, Dykstra, R, Eccles, CD, Haskell, TG and Seymour, JD (1999) A nuclear magnetic resonance study of Antarctic sea ice brine diffusivity. Cold Reg. Sci. Technol., 29(2), 153171 (doi: 10.1016/S0165-232X(99)00024-5)
Comiso, JC (2010) Variability and trends of the global sea ice cover. In Thomas, DN and Dieckmann, GS eds. Sea ice. Wiley-Blackwell, Oxford, 205246
Eicken, H (2009) Ice sampling and basic sea-ice core analysis. In Eicken, H, Gradinger, R, Salganek, M, Shirasawa, K, Perovich, D and Leppäranta, M eds. Field techniques for sea ice research. University of Alaska Press, Fairbanks, AK, 117140
Eicken, H, Bock, C, Wittig, R, Miller, H and Poertner, HO (2000) Magnetic resonance imaging of sea-ice pore fluids: methods and thermal evolution of pore microstructure. Cold Reg. Sci. Technol., 31(3), 207225 (doi: 10.1016/S0165-232X(00)00016-1)
Flinspach, D (2005) Gleichstromgeoelektrik zur Erkundung der inneren Struktur und der Dicke von Meereis. (Diplom thesis, Ludwig-Maximilian-Universität)
Günther, T, Rücker, C and Spitzer, K (2006) Three-dimensional modelling and inversion of dc resistivity data incorporating topography – II. Inversion. Geophys. J. Int. , 166(2), 506517 (doi: 10.1111/j.1365-246X.2006.03011.x)
Haas, C (1997) Bestimmung der Meereisdicke mit seismichen und elektromagnetisch-induktiven Verfahren. Ber. Polarforsch/Rep. Pol. Res., 223, 1161
Haas, C (2010) Dynamics versus thermodynamics: the sea ice thickness distribution. In Thomas, DN and Dieckmann, GS eds. Sea ice. Wiley-Blackwell, Oxford, 113151
Haas, C, Lobach, J, Hendricks, S, Rabenstein, L and Pfaffling, A (2009) Helicopter-borne measurements of sea ice thickness, using a small and lightweight, digital EM system. J. Appl. Geophys., 67(3), 234241 (doi: 10.1016/j.jappgeo.2008.05.005)
Hertrich, M (2008) Imaging of groundwater with nuclear magnetic resonance. Progr. Nucl. Magn. Reson. Spectrosc., 53(4), 227248 (doi: 10.1016/j.pnmrs.2008.01.002)
Hertrich, M, Braun, M, Gunther, T, Green, AG and Yaramanci, U (2007) Surface nuclear magnetic resonance tomography. IEEE Trans. Geosci. Remote Sens., 45(11), 37523759 (doi: 10.1109/TGRS.2007.903829)
Høyland, KV (2007) Morphology and small-scale strength of ridges in the North-western Barents Sea. Cold Reg. Sci. Technol., 48(3), 169187 (doi: 10.1016/j.coldregions.2007.01.006)
Jones, KA, Ingham, M, Pringle, DJ and Eicken, H (2010) Temporal variations in sea ice resistivity: resolving anisotropic microstructure through cross-borehole DC resistivity tomography. J. Geophys. Res., 115(C11), C11023 (doi: 10.1029/2009JC006049)
Jones, KA, Ingham, M and Eicken, H (2012) Modeling the anisotropic brine microstructure in first-year Arctic sea ice. J. Geophys. Res., 117(C2), C02005 (doi: 10.1029/2011JC007607)
Kovacs, A and Morey, RM (1978) Radar anisotropy of sea ice due to preferred azimuthal orientation of the horizontal c-axes of ice crystals. J. Geophys. Res., 83(C12), 6037 (doi: 10.1029/JC083iC12p06037)
Kovacs, A, Diemand, D and Bayer, JJ Jr (1996) Electromagnetic induction sounding of sea ice thickness. CRREL Rep. 96-6
Legchenko, A, Baltassat, J-M, Bobachev, A, Martin, C, Robain, H and Vouillamoz, J-M (2004) Magnetic resonance sounding applied to aquifer characterization. Ground Water, 42(3), 363373 (doi: 10.1111/j.1745-6584.2004.tb02684.x)
Lehmann-Horn, JA, Hertrich, M, Greenhalgh, SA and Green, AG (2011a) Three-dimensional magnetic field and NMR sensitivity computations incorporating conductivity anomalies and variable-surface topography. IEEE Trans. Geosci. Remote Sens., 49(10), 38783891 (doi: 10.1109/TGRS.2011.2135861)
Lehmann-Horn, JA, Walbrecker, JO, Hertrich, M, Langston, G, McClymont, AF and Green, AG (2011b) Imaging groundwater beneath a rugged proglacial moraine. Geophysics, 76(5), B165B172 (doi: 10.1190/geo2011-0095.1)
Lehmann-Horn, JA, Hertrich, M, Greenhalgh, SA and Green, AG (2012) On the sensitivity of surface NMR in the presence of electrical conductivity anomalies. Geophys. J. Int., 189(1), 331342 (doi: 10.1111/j.1365-246X.2012.05380.x)
Leppäranta, M and Hakala, R (1992) The structure and strength of first-year ice ridges in the Baltic Sea. Cold Reg. Sci. Technol., 20(3), 295311 (doi: 10.1016/0165-232X(92)90036-T)
Lindsay, RW, Zhang, J, Schweiger, A, Steele, M and Stern, H (2009) Arctic sea ice retreat in 2007 follows thinning trend. J. Climate, 22(1), 165176 (doi: 10.1175/2008JCLI2521.1)
Love, JJ (2008) Magnetic monitoring of Earth and space. Phys. Today, 61(2), 3137 (doi: 10.1063/1.2883907)
Poljak, D (2007) Advanced modeling in computational electromagnetic compatibility. Wiley, Hoboken, NJ
Rothrock, DA and Zhang, J (2005) Arctic Ocean sea ice volume: what explains its recent depletion? J. Geophys. Res., 110(C1), C01002 (doi: 10.1029/2004JC002282)
Stogryn, A and Desargant, GJ (1985) The dielectric properties of brine in sea ice at microwave frequencies. IEEE Trans. Antennas Propag., 33(5), 523532 (doi: 10.1109/TAP.1985.1143610)
Stroeve, J, Holland, MM, Meier, W, Scambos, T and Serreze, M (2007) Arctic sea ice decline: faster than forecast. Geophys. Res. Lett., 34(9), L09501 (doi: 10.1029/2007GL029703)
Timco, GW and Burden, RP (1997) An analysis of the shapes of sea ice ridges. Cold Reg. Sci. Technol., 25(1), 6577 (doi: 10.1016/S0165-232X(96)00017-1)
Valla, P and Yaramanci, U eds. (2002) Surface nuclear magnetic resonance: what is possible? J. Appl. Geophys., 50(1–2), 1230
Varian, RH (1962) Ground liquid prospecting and apparatus. US Patent 3,019,383
Walbrecker, J, Hertrich, M and Green, A (2009) Accounting for relaxation processes during the pulse in surface NMR data. Geophysics, 74(6), G27G34 (doi: 10.1190/1.3238366)
Walbrecker, JO, Hertrich, M and Green, AG (2011a) Off-resonance effects in surface nuclear magnetic resonance. Geophysics, 76(2), G1G12 (doi: 10.1190/1.3535414)
Walbrecker, J, Hertrich, M, Lehmann-Horn, J and Green, A (2011b) Estimating the longitudinal relaxation time T 1 in surface NMR. Geophysics, 76(2), F111F122 (doi: 10.1190/1.3549642)
Weichman, PB, Lavely, EM and Ritzwoller, MH (2000) Theory of surface nuclear magnetic resonance with applications to geophysical imaging problems. Phys. Rev. E, 62(1), 12901312 (doi: 10.1103/PhysRevE.62.1290)
Yaramanci, U and Legchenko, AV eds. (2005) Magnetic resonance sounding, aquifer detection and characterization. Near Surf. Geophys., 3, Special issue, 119222, 255–310
Yaramanci, U, Legchenko, A and Roy, J eds. (2008) Resonance sounding – a reality in applied hydrogeophysics. J. Appl. Geophys., 66(3–4), 71196
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed