Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-jn9wc Total loading time: 0.159 Render date: 2021-05-14T08:19:42.664Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Article contents

Early Holocene coca chewing in northern Peru

Published online by Cambridge University Press:  25 November 2010

Tom D. Dillehay
Affiliation:
Department of Anthropology, Vanderbilt University, Nashville, TN 37235, USA Instituto de Ciencias Sociales, Universidad Austral de Chile, Valdivia, Chile
Jack Rossen
Affiliation:
Department of Anthropology, Ithaca College, Ithaca, NY 14850, USA
Donald Ugent
Affiliation:
Department of Botany, Southern Illinois University, Carbondale, IL 62901, USA
Anathasios Karathanasis
Affiliation:
Department of Plant and Soil Sciences, University of Kentucky, KY 40506, USA
Víctor Vásquez
Affiliation:
Laboratorio de Arqueobiología, Universidad Nacional de Trujillo, Perú
Patricia J. Netherly
Affiliation:
Department of Anthropology, Vanderbilt University, Nashville, TN 37235, USA
Corresponding

Abstract

Chewing coca in South America began by at least 8000 cal BP: our authors found and identified coca leaves of that date in house floors in the Nanchoc Valley, Peru. There were also pieces of calcite — which is used by chewers to bring out the alkaloids from the leaves. Excavation and chemical analysis at a group of neighbouring sites suggests that specialists were beginning to extract and supply lime or calcite, and by association coca, as a community activity at about the same time as systematic farming was taking off in the region.

Type
Research articles
Copyright
Copyright © Antiquity Publications Ltd 2010

Access options

Get access to the full version of this content by using one of the access options below.

References

Baker, P.T. & Mazess, R.B.. 1963. Calcium: unusual sources in the highland Peruvian diet. Science 142: 1466–7.CrossRefGoogle ScholarPubMed
Bieri, S., Brachet, A., Veuthey, J.L. & Christen, P.. 2006. Cocaine distribution in wild Erythroxylum species. Journal of Ethnopharmacology 103: 439–47.CrossRefGoogle ScholarPubMed
Chavez Velasquez, N.A. 1977. La materia médica en el Incanato. Lima: Editorial Mejía Baca.Google Scholar
Cieza De León, P. De. 1973. La crónica del Perú (1553). Lima: Ediciones PEISA.Google Scholar
Cohen, M.N. 1978. Archaeological plant remains from the central coast of Peru. Nawpa Pacha 16: 36–7.CrossRefGoogle Scholar
Cortella, A.R., Pochettino, M.L., Manzo, A. & Raviña, G.. 2001. Erythroxylum coca: microscopical identification in powdered and carbonized archaeological material. Journal of Archaeological Science 28: 787–94.CrossRefGoogle Scholar
Dillehay, T.D. 1979. Pre-Hispanic resource sharing in the central Andes. Science 204: 2431.CrossRefGoogle ScholarPubMed
Dillehay, T.D. 2004. Social integration, public landscape, and uncertainty in formative Peru. Journal of Social Archaeology 4: 268–92.CrossRefGoogle Scholar
Dillehay, T.D. (ed.) In press. From foragers to farmers in the Andes: new perspective on food production and social organization. Cambridge: Cambridge University Press.Google Scholar
Dillehay, T.D., Netherly, P.J. & Rossen, J.. 1989. Early Preceramic public and residential sites on the forested slope of the western Andes, northern Peru. American Antiquity 54: 733–59.CrossRefGoogle Scholar
Dillehay, T.D. 1997. The Nanchoc tradition: the beginnings of Andean civilization. American Scientist 85: 4656.Google Scholar
Dillehay, T.D., Eling, H. & Rossen, J.. 2005. Preceramic irrigation canals in the Peruvian Andes. Proceedings of the National Academy of Sciences USA 102: 17241–4.CrossRefGoogle ScholarPubMed
Dillehay, T.D., Rossen, J., Andres, T. & Williams, D.. 2007. Preceramic adoption of peanut, squash and cotton in northern Peru. Science 316: 1890–93.CrossRefGoogle ScholarPubMed
Dillon, M.O. & Cadle, J.E.. 1991. Bosque Monteseco: a cloud forest above the Peruvian desert. Bulletin of the Field Museum of Natural History 1: 14.Google Scholar
Duke, J.A., Aulik, D. & Plowman, T.. 1975. Nutritional value of coca. Botanical Museum Leaflets 24: 113–9.Google Scholar
Engel, F. 1963. A Preceramic settlement on the central coast of Peru: Asia, unit 1. Transactions of the American Philosophical Society 53: 1139.CrossRefGoogle Scholar
Johnson, E.L., Saunders, J.A., Mischke, S., Helling, C.S. & Emche, S.D.. 2003. Identification of Erythroxylum taxa by AFLP DNA analysis. Phytochemisty 64: 187–97.CrossRefGoogle ScholarPubMed
Karathanasis, A. & Hajek, B.F.. 1992. Revised methods for rapid quantitative determination of minerals in soil clays. Journal of the Soil Science Society of America 46: 419–25.CrossRefGoogle Scholar
Karathanasis, A. & Sparks, D.L. (ed.). 1996. Methods of soil analysis. Part 3, Chemical methods (Soil Science Society of America book series 5). Madison (WI): Soil Science Society of America: American Society of Agronomy.Google Scholar
Klepinger, L. & Kuhn, J.. 1973. Prehistoric dental calculus gives evidence for coca in early coastal Ecuador. Nature 269: 506507.CrossRefGoogle Scholar
Lathrap, D., Collier, D. & Chandra, H.. 1976. Ancient Ecuador: culture, clay, and creativity, 3000-300 BC. Chicago (IL): Field Museum of Natural History.Google Scholar
Marcus, J. & Silva, J.. 1988. The Chillon Valley coca lands: archaeological background and ecological context, in Rostworowski, M. de Diez Canseco (ed.) Conflicts over coca fields in XVIth-century Peru (Memoirs of the Museum of Anthropology, University of Michigan 21): 1-32. Ann Arbor (MI): University of Michigan, Museum of Anthropology.Google Scholar
Molina, Y., Torres, T., Belmonte, E. & Santoro, C.. 1989. Uso y posible cultivo de coca (Eryhtroxylum spp.) en épocas prehisp´anicas en los valles de Arica. Chungar´a 23: 3749.Google Scholar
Pacini, D. & Franquemont, C. (ed.). 1985. Coca and cocaine: effects on people and policy in Latin America (Cultural survival report 23). Cambridge (MA): Cultural Survival Inc.Google Scholar
Piperno, D.R. & Dillehay, T.D.. 2008. Starch grains on human teeth reveal early broad crop diet in northern Peru. Proceedings of the National Academy of Sciences 105(50): 19622–7.CrossRefGoogle ScholarPubMed
Plowman, T. 1979. The identity of Amazonian and Trujillo coca. Botanical Museum Leaflets 27: 4568.Google Scholar
Plowman, T. 1983. The origin, evolution and diffusion of coca, Erythroxylum spp., in Stone, D. (ed.) Pre-Columbian plant migration: 125–63: Cambridge (MA): Harvard University Press.Google Scholar
Plowman, T. & Hensold, N.. 2004. Names, types, and distribution of neotropical species of Erythroxylum (Erythroxylaceae). Brittonia 56: 153.CrossRefGoogle Scholar
Rossen, J. 1991. Ecotones and low risk intensification: the middle Preceramic habitation of Nanchoc, northern Peru. Unpublished PhD dissertation, University of Kentucky.Google Scholar
Rossen, J. & Dillehay, T.D.. 2002. Tecnología y ritos en el arcaico medio del Valle de Zana, Peru. Bolétin de Arqueología de la Universidad Pontifícia Catolica del Peru 3: 2441.Google Scholar
Rostworowski De Diez Canseco, M. 1988. Conflicts over coca fields in XVIth-century Peru (Memoirs of the Museum of Anthropology, University of Michigan 21). Ann Arbor (MI): University of Michigan, Museum of Anthropology.Google Scholar
Rury, P. & Plowman, T.. 1983. Morphological studies of archaeological and recent coca leaves (Erythroxylum spp.). Botanical Museum Leaflets 29: 297341.Google Scholar
Simpson, B.B. 1975. Pleistocene changes in the flora of the high tropical Andes. Palaeobiology 1: 273–94.CrossRefGoogle Scholar
Ugent, D. & Ochoa, C.M.. 2006. La etnobotanica del Perú: desde la prehistoria al presente. Lima: Consejo Nacional de Ciencia y Tecnologia.Google Scholar
Vuilleumier, B.S. 1971. Pleistocene changes in the fauna and flora of South America. Science 173: 771–80.CrossRefGoogle ScholarPubMed

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Early Holocene coca chewing in northern Peru
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Early Holocene coca chewing in northern Peru
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Early Holocene coca chewing in northern Peru
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *