Skip to main content

Application of sky-view factor for the visualisation of historic landscape features in lidar-derived relief models

  • Žiga Kokalj (a1) (a2), Klemen Zakšek (a2) (a3) and Krištof Oštir (a1) (a2)

Aerial mapping and remote sensing takes another step forward with this method of modelling lidar data. The usual form of presentation, hill shade, uses a point source to show up surface features. Sky-view factor simulates diffuse light by computing how much of the sky is visible from each point. The result is a greatly improved visibility — as shown here by its use on a test site of known topography in Slovenia.

Corresponding author
*Author for correspondence
Hide All
Bewley, R., Crutchley, S. & Shell, C. 2005. New light on an ancient landscape: lidar survey in the Stonehenge World Heritage Site. Antiquity 79: 636–47.
Bourbia, F. & Awbi, H.B. 2004. Building cluster and shading in urban canyon for hot dry climate, Part 1: air and surface temperature measurements. Renewable Energy 29: 249–62.
Brassel, K. 1974. A model for automatic hill-shading. Cartography and Geographic Information Science 1: 1527.
Briese, C., Mandlburger, G., Ressl, C. & Brockmann, H. 2009. Automatic break line determination for the generation of a DTM along the river Main. Laser Scanning 38(3/W8): 236–41.
Challis, K., Forlin, P. & Kincey, M. In press. A generic toolkit for the visualisation of archaeological features on airborne lidar elevation data. Archaeological Prospection.
Challis, K., Kokalj, Ž., Kincey, M., Moscrop, D. & Howard, A.J. 2008. Airborne lidar and historic environment records. Antiquity 82: 1055–64.
Ciglenečki, S. 1998. Tonovcov grad near Kobarid: an archaeological site. A guide. Ljubljana & Kobarid: Znanstvenoraziskovalni Center SAZU.
Devereux, B.J., Amable, G.S, Crow, P. & Cliff, A.D. 2005. The potential of airborne lidar for detection of archaeological features under woodland canopies. Antiquity 79: 648–60.
Devereux, B.J., Amable, G.S. & Crow, P. 2008. Visualisation of LiDAR terrain models for archaeological feature detection. Antiquity 82: 470–79.
Doneus, M., Briese, C., Fera, M. & Janner, M. 2008. Archaeological prospection of forested areas using full-waveform airborne laser scanning. Journal of Archaeological Science 35: 882–93.
Duffie, J.A. & Beckman, W.A. 1991. Solar engineering of thermal processes. Second edition. New York: Wiley-Interscience.
Hesse, R. 2010. LiDAR-derived local relief models—a new tool for archaeological prospection. Archaeological Prospection 17: 6772.
Horn, B. 1981. Hill shading and the reflectance map. Proceedings of the Institute of Electrical and Electronics Engineers 69: 1447.
Imhof, E. 1982. Cartographic relief presentation. Berlin & New York: Walter de Gruyter.
ITT Visual Information Solutions. 2010. ENVI Software-Image Processing & Analysis Solutions. Available at: (accessed November 9, 2009).
Kennelly, P.J. 2008. Terrain maps displaying hill-shading with curvature. Geomorphology 102: 567–77.
Kershaw, A. 2003. Hadrian's Wall national mapping programme -a World Heritage Site from the air. Archaeological Prospection 10: 159–61.
Kim, J.R., Muller, J., Gasselt, S.V., Morley, J.G., Neukum, G. & The HRSC COI Team. 2005. Automated crater detection, a new tool for Mars cartography and chronology. Photogrammetric Engineering and Remote Sensing 71: 1205–17.
Knific, T. 2004. Na stičišču treh svetov: arheološki podatki o Goriški v zgodnjem srednjem veku. Goriški letnik 29: 530.
Kobler, A., Pfeifer, N., Ogrinc, P., Todorovski, L., Oštir, K. & Džeroski, S. 2007. Repetitive interpolation: a robust algorithm for DTM generation from Aerial Laser Scanner Data in forested terrain. Remote Sensing of Environment 108: 923.
Kweon, I.S. & Kanade, T. 1994. Extracting topographic terrain features from elevation maps. CVGIP: Image Understanding 59: 171–82.
López, A. M., Lumbreras, F., Serrat, J. & Villanueva, J.J. 1999. Evaluation of methods for ridge and valley detection. Institute of Electrical and Electronics Engineers Transactions on Pattern Analysis and Machine Intelligence 21: 327–35.
Marks, D., Dozier, J. & Davis, R. 1979. Clear-sky longwave radiation model for remote alpine areas. Archiv für Meteorologie, Geophysik und Bioklimatologie Serie B-Klimatologie Umweltmeteorologie Strahlungsforschung 27: 159–87.
Osmuk, N. 1992. Na lupu (Sv. Helena). Varstvo spomenikov 34: 273.
Robinson, D. 2006. Urban morphology and indicators of radiation availability. Solar Energy 80: 1643–8.
Sittler, B. 2004. Revealing historical landscapes by using airborne laser—scanning -a 3D-model of ridge and furrow in forests near Rastatt (Germany). International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 36(8/W2): 258–61.
Tian, Y.Q., Davies-Colley, R.J., Gong, P. & Thorrold, B.W. 2001. Estimating solar radiation on slopes of arbitrary aspect. Agricultural and Forest Meteorology 109: 6774.
Wladis, D. 1999. Automatic lineament detection using digital elevation models with second derivative filters. Photogrammetric Engineering and Remote Sensing 65: 453–8.
Wood, J. 1996. The geomorphological characterisation of digital elevation models. PhD dissertation, University of Leicester. Available at: (accessed December 7, 2009).
Yard, M.D., Bennett, G.E., Mietz, S.N., Coggins, L.G. JR., Stevens, L.E., Hueftle, S. & Blinn, D.W. 2005. Influence of topographic complexity on solar insolation estimates for the Colorado River, Grand Canyon, AZ. Ecological Modelling 183: 157–72.
Yoëli, P. 1965. Analytische Schattierung. Ein kartographischer Entwurf. Kartographische Nachrichten 15(5): 141–8.
Zrc Sazu. 2010. IAPS ZRC SAZU [Institute of Anthropological and Spatial Studies ZRC SAZU]. Available at: (accessed November 9, 2010).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0003-598X
  • EISSN: 1745-1744
  • URL: /core/journals/antiquity
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 1
Total number of PDF views: 79 *
Loading metrics...

Abstract views

Total abstract views: 497 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th March 2018. This data will be updated every 24 hours.