Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-17T08:17:48.664Z Has data issue: false hasContentIssue false

On the dynamics of a family of third-order iterative functions

Published online by Cambridge University Press:  17 February 2009

Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the dynamics of a family of third-order iterative methods that are used to find roots of nonlinear equations applied to complex polynomials of degrees three and four. This family includes, as particular cases, the Chebyshev, the Halley and the super-Halleyroot-finding algorithms, as well as the so-called c-methods. The conjugacy classes of theseiterative methods are found explicitly.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2007

References

[1]Amat, S. and Busquier, S., “Third-order iterative methods under Kantorovich conditions”, Appl. Math. Appl., to appear.Google Scholar
[2]Amat, S., Busquier, S. and Gutiérrez, J. M., “Geometric constructions of iterative functions to solve nonlinear equations”, J. Comput. Appl. Math. 157 (2003) 197205.CrossRefGoogle Scholar
[3]Amat, S., Busquier, S., Kebir, D. El and Molina, J., “A fast Chebyshev's method for quadratic equations”, Appl. Math. Comput. 148 (2004) 461–171.Google Scholar
[4]Amat, S., Busquier, S. and Plaza, S., “Dynamics of a family of third-order iterative methods that do not require using second derivative”, Appl. Math. Comput. 154 (2004) 735746.Google Scholar
[5]Argiropoulos, N., Drakopoulos, V. and Böhm, A., “Julia and Mandelbrot-like sets for higher order König rational iterative maps”, in Fractal Frontiers (eds. Novak, M. M. and Dewey, T. G.), (World Scientific, Singapore, 1997) 169178.Google Scholar
[6]Argyros, I. K., “Quadratic equations and applications to Chandrasekhar's and related equations”, Bull. Austral. Math. Soc. 32 (1985) 275292.CrossRefGoogle Scholar
[7]Argyros, I. K. and Chen, D., “Results on the Chebyshev method in Banach spaces”, Proyecciones 12 (1993) 119128.CrossRefGoogle Scholar
[8]Arney, D. C. and Robinson, B. T., “Exhibiting chaos and fractals with a microcomputer”, Comput. Math. Appl. 19 (1990) 111.CrossRefGoogle Scholar
[9]Blanchard, P., “Complex analytic dynamics on the Riemann sphere”, Bull. Amer. Math. Soc. 11 (1984) 85141.CrossRefGoogle Scholar
[10]Buff, X. and Henriksen, C., “On the König root-finding algorithms”, Nonlinearity 16 (2003) 9891015.CrossRefGoogle Scholar
[11]Candela, V. F. and Marquina, A., “Recurrence relations for rational cubic methods I. The Halley method”, Computing 44 (1990) 169184.CrossRefGoogle Scholar
[12]Candela, V. F. and Marquina, A., “Recurrence relations for rational cubic methods II. The Chebyshev method”, Computing 45 (1990) 355367.CrossRefGoogle Scholar
[13]Cayley, A., “The Newton-Fourier imaginary problem”, Amer. J. Math. 2 (1879) 97.CrossRefGoogle Scholar
[14]Cayley, A., “On the Newton-Fourier imaginary problem”, Proc. Cambridge Phil. Soc. 3 (1880) 231232.Google Scholar
[15]Chen, D., “Ostrowski-Kantarovich theorem and S-order of convergence of Halley method in Banach spaces”, Comment. Math Univ. Carolina 58 (1993) 215224.Google Scholar
[16]Chen, D., Argyros, I. K. and Qian, Q. S., “A local convergence theorem for the super-Halley method in Banach spaces”, Appl. Math. Lett. 7 (1994) 4952.CrossRefGoogle Scholar
[17]Curry, J. H., Garnett, L. and Sullivan, D., “On the iteration of a rational function: computer experiment with Newton's method”, Comm. Math. Phys. 91 (1983) 267277.CrossRefGoogle Scholar
[18]Davis, H. T., Introduction to nonlinear differential and integral equations (Dover, New York, 1962).Google Scholar
[19]Drakopoulos, V., “How is the dynamics of König iterative method affected by their additional fixed points?”, Fractals 7 (1999) 327334.CrossRefGoogle Scholar
[20]Drakopoulos, V., “Are there any Julia sets for Laguerre iterative method?”, Comput. Math. Appl. 46 (2003) 12011210.CrossRefGoogle Scholar
[21]Ezquerro, J. A., Gutiérrez, J. M., Hernández, M. A. and Salanova, M. A., “The super-Halley method and partial differential equations”, in XV Congress on Differential Equations and Applications/ V Congress on Applied Mathematics (Vigo, 1997), (Spanish), (Univ. Vigo, Vigo, 1998) 713718.Google Scholar
[22]Ezquerro, J. A., Gutiérrez, J. M., Hernández, M. A. and Salanova, M. A., “Chebyshev-like methods and quadratic equations”, Rev. Anal. Numer. Theor. Approx. 28 (1999) 2335.Google Scholar
[23]Gutiérrez, J. M. and Hernández, M. A., “A family of Chebyshev-Halley type methods in Banach spaces”, Bull. Austral. Math. Soc. 55 (1997) 113130.CrossRefGoogle Scholar
[24]Gutiérrez, J. M. and Hernández, M. A., “An acceleration of Newton's method: super-Halley method”, Appl. Math. Comput. 117 (2001) 223239.Google Scholar
[25]Gutiérrez, J. M., Hernández, M. A. and Salanova, M. A., “Quadratic equations in Banach spaces”, Numer. Func. Anal. Optim. 7 (1996) 113121.CrossRefGoogle Scholar
[26]Hernández, M. A., “A family of Chebyshev-Halley type methods”, Internal. J. Comput. Math. 47 (1993) 5963.CrossRefGoogle Scholar
[27]Kneisl, K., “Julia sets for the super-Newton method, Cauchy 's method and Halley's method”, Chaos 11 (2001).CrossRefGoogle ScholarPubMed
[28]Milnor, J., Dynamics in one complex variable: introductory lectures (Vieweg, Braunschweig, 1999).Google Scholar
[29]Morosawa, S., Nishimura, Y., Taniguchi, M. and Ueda, T., Holomorphic dynamics (Cambridge University Press, Cambridge, 1999).Google Scholar
[30]Peitgen, H. O. (ed.), Newton's method and dynamical systems (Kluwer Academic Publishers, Dordrecht, 1989).CrossRefGoogle Scholar
[31]Roberts, G. E. and Horgan-Kobelski, J., “Newton's versus Halley's method: an approach via complex dynamics”, Internal. J. Bifur. Chaos Appl. Sci. Engrg. 14 (2004) 34593475.CrossRefGoogle Scholar
[32]Schröder, E. O., “On infinitely many algorithms for solving equations”, Math. Ann. 2 (1870) 317–265; Translated by Stewart, G. W., 1992 (this report is available by anonymous ftp from thales.cs.umd.edu in the directory pub/reports).CrossRefGoogle Scholar
[33]Vrscay, E., “Julia sets and Mandelbrot-like sets associated with higher order Schröder rational iterative methods: a computer assisted study”, Math. Comput. 46 (1986) 151169.Google Scholar
[34]Vrscay, E. and Gilbert, W., “Extraneous fixed points, basin boundary and chaotic dynamics for Schroder and König rational iterative methods”, Numer. Math. 52 (1988) 116.CrossRefGoogle Scholar