Skip to main content Accesibility Help
×
×
Home

Adaptive feature truncation to address acoustic mismatch in automatic recognition of children's speech

  • Shweta Ghai (a1) and Rohit Sinha (a1)
Abstract

An algorithm for adaptive Mel frequency cepstral coefficients (MFCC) feature truncation is proposed to improve automatic speech recognition (ASR) performance under acoustically mismatched conditions. Using the relationship found between MFCC base feature truncation and degree of acoustic mismatch of speech signals with respect to recognition models, the proposed algorithm performs utterance-specific MFCC feature truncation for test signals to address their acoustic mismatch in context of ASR. The proposed technique, without any prior knowledge about the speaker of the test utterance, gives 38% (on a connected-digit recognition task) and 36% (on a continuous speech recognition task) relative improvement over baseline in ASR performance for children's speech on models trained on adult speech, which is also found to be additive to improvements obtained with vocal tract length normalization and/or constrained maximum likelihood linear regression. The generality and effectiveness of the algorithm is also validated for automatic recognition of children's and adults' speech under matched and mismatched conditions.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Adaptive feature truncation to address acoustic mismatch in automatic recognition of children's speech
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Adaptive feature truncation to address acoustic mismatch in automatic recognition of children's speech
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Adaptive feature truncation to address acoustic mismatch in automatic recognition of children's speech
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.
Corresponding author
Corresponding author: S. Ghai shweta.ghai@emory.edu
References
Hide All
[1] Potamianos, A.; Narayanan, S.: Robust recognition of children's speech. IEEE Trans. Speech Audio Process., 11 (6) (2003), 603616.
[2] Lee, S.; Potamianos, A.; Narayanan, S.: Acoustics of children's speech: developmental changes of temporal and spectral parameters. J. Acoust. Soc. Amer., 105 (3) (1999), 14551468.
[3] Wilpon, J.G.; Jacobsen, C.N.: A Study of Speech Recognition for Children and the Elderly, ICASSP, Atlanta, Georgia, 1996, 349352.
[4] Das, S.; Nix, D.; Picheny, M.: Improvements in Children's Speech Recognition Performance, ICASSP, Seattle, Washington, 1998, 433436.
[5] Gerosa, M.; Giuliani, D.; Brugnara, F.: Towards age-independent acoustic modeling. Speech Commun., 51 (2009), 499509.
[6] Gerosa, M.; Giuliani, D.; Brugnara, F.: Speaker Adaptive Acoustic Modeling with Mixture of Adult and Children's Speech, Interspeech, Lisbon, Portugal, 2005, 21932196.
[7] Elenius, D.; Blomberg, M.: Adaptation and Normalization Experiments in Speech Recognition for 4 to 8 Year Old Children, Interspeech, Lisbon, Portugal, 2005, 27492752.
[8] Gerosa, M.; Giuliani, D.; Brugnara, F.: Acoustic variability and automatic recognition of children's speech. Speech Commun., 49 (10–11) (2007), 847860.
[9] Narayanan, S.; Potamianos, A.: Creating conversational interfaces for children. IEEE Trans. Speech Audio Process., 10 (2) (2002), 6578.
[10] Gales, M.J.F.: Maximum likelihood linear transformations for HMM-based speech recognition. Comput. Speech Lang., 12 (2) (1998), 7598.
[11] Giuliani, D.; Gerosa, M.; Brugnara, F.: Improved automatic speech recognition through speaker normalization. Comput. Speech Lang., 20 (1) (2006), 107123.
[12] Gustafson, J.; Sjölander, K.: Voice Transformations for Improving Children's Speech Recognition in a Publicly Available Dialogue System, ICSLP, Denver, Colorado, 2002, 297300.
[13] Garau, G.; Renals, S.: Combining spectral representations for large vocabulary continuous speech recognition. IEEE Trans. Audio Speech Lang. Process., 16 (2008), 508518.
[14] Singer, H.; Sagayama, S.: Pitch Dependent Phone Modelling for HMM Based Speech Recognition, vol. 1. ICASSP, San Francisco, CA, 1992, 273276.
[15] Sinha, R.; Ghai, S.: On the use of Pitch Normalization for Improving Children's Speech Recognition, Interspeech, Brighton, UK, 2009, 568571.
[16] Rabiner, L.; Juang, B.-H.: Fundamentals of Speech Recognition , 1st ed. Prentice-Hall PTR, Upper Saddle River, NJ, 1993.
[17] Leonard, R.: A Database for Speaker-independent Digit Recognition, ICASSP, San Diego, CA, 1984, 42.11.1–42.11.4.
[18] Robinson, T.; Fransen, J.; Pye, D.; Foote, J.; Renals, S.: WSJCAM0: A British English Speech Corpus for Large Vocabulary Continuous Speech Recognition, ICASSP, Detroit, Michigan, 1995, 8184.
[19] Batliner, A. et al. : The PFSTAR Children's Speech Corpus, Interspeech, Lisbon, Portugal, 2005, 27612764.
[20] Sjölander, K.; Beskow, J.: Wavesurfer – An Open Source Speech Tool, ICSLP, Beijing, China, 2000, 464467.
[21] Young, S. et al. : The HTK Book Version 3.4, Cambridge University Engineering Department, Cambridge, UK, 2006.
[22] Hirsch, H.; Pearce, D.: The AURORA Experimental Framework for the Performance Evaluation of Speech Recognition Systems Under Noisy Conditions, ISCA IITRW ASRU, Paris, France, 2000, 181188.
[23] Burnett, D.; Fanty, M.: Rapid Unsupervised Adaptation to Children's Speech on a Connected-digit Task, vol. 2, ICSLP, Philadelphia, PA, 1996, 11451148.
[24] Cabral, J.P.; Oliveira, L.C.: Pitch-synchronous Time-scaling for Prosodic and Voice Quality Transformations, Interspeech, Lisbon, Portugal, 2005, 11371140.
[25] Ghai, S.; Sinha, R.: Exploring the effect of differences in the acoustic correlates of adults' and children's speech in the context of automatic speech recognition. EURASIP J. Audio Speech Music Process., Article ID 318785 (2010), 15. doi: 10.1155/2010/318785.
[26] Lee, L.; Rose, R.C.: A frequency warping approach to speaker normalization. IEEE Trans. Speech Audio Process., 6 (1) (1998), 4960.
[27] Ghai, S.: Addressing Pitch Mismatch for Children's Automatic Speech Recognition. Unpublished Ph.D. thesis, Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, India, 2011.
[28] Kathania, H.K.; Ghai, S.; Sinha, R.: Soft-Weighting Technique for Robust Children Speech Recognition under Mismatched Condition, INDICON, Mumbai, India, 2013.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

APSIPA Transactions on Signal and Information Processing
  • ISSN: 2048-7703
  • EISSN: 2048-7703
  • URL: /core/journals/apsipa-transactions-on-signal-and-information-processing
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed