Skip to main content
×
Home

An overview on video forensics

  • Simone Milani (a1), Marco Fontani (a2) (a3), Paolo Bestagini (a1), Mauro Barni (a2) (a3), Alessandro Piva (a4) (a3), Marco Tagliasacchi (a1) and Stefano Tubaro (a1)...
Abstract

The broad availability of tools for the acquisition and processing of multimedia signals has recently led to the concern that images and videos cannot be considered a trustworthy evidence, since they can be altered rather easily. This possibility raises the need to verify whether a multimedia content, which can be downloaded from the internet, acquired by a video surveillance system, or received by a digital TV broadcaster, is original or not. To cope with these issues, signal processing experts have been investigating effective video forensic strategies aimed at reconstructing the processing history of the video data under investigation and validating their origins. The key assumption of these techniques is that most alterations are not reversible and leave in the reconstructed signal some “footprints”, which can be analyzed in order to identify the previous processing steps. This paper presents an overview of the video forensic techniques that have been proposed in the literature, focusing on the acquisition, compression, and editing operations, trying to highlight strengths and weaknesses of each solution. It also provides a review of simple processing chains that combine different operations. Anti-forensic techniques are also considered to outline the current limitations and highlight the open research issues.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      An overview on video forensics
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      An overview on video forensics
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      An overview on video forensics
      Available formats
      ×
Copyright
Corresponding author
Corresponding author: S. Milani E-mail: milani@elet.polimi.it
References
Hide All
[1]Farid H.: Exposing digital forgeries in scientific images, in Proc. 8th Workshop on Multimedia and Security (MM&Sec 2006), September 26–27, 2006, 2936.
[2]Venkatraman D.; Makur A.: A compressive sensing approach to object-based surveillance video coding, in Proc. of IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP 2009), Taipei, Taiwan, April 19–24, 2009, 35133516.
[3]Wang W.; Farid H.: Detecting re-projected video, in Information Hiding, Lecture Notes in Computer Science, Solanki K., Sullivan K., and Madhow U., eds., vol. 5284, Springer, Berlin 2008, 7286.
[4]Wang W.; Farid H.: Exposing digital forgeries in video by detecting double MPEG compression, in MM&Sec, Voloshynovskiy S., Dittmann J., and Fridrich J. J., eds., ACM, 2006, 3747.
[5]Sencar H. T.; Memon N.: Overview of State-of-the-art in Digital Image Forensics, Part of Indian Statistical Institute Platinum Jubilee Monograph series titled ‘Statistical Science and Interdisciplinary Research’ World Scientific Press, 2008.
[6]Poisel R.; Tjoa S.: Forensics investigations of multimedia data: a review of the state-of-the-art, in 2011 Sixth Int. Conf. on IT Security Incident Management and IT Forensics (IMF), Stuttgart, Germany, May 10–12, 2011, 4861.
[7]Fridrich J.: Image watermarking for tamper detection, in ICIP (2), 1998, 404408.
[8]Eggers J.; Girod B.: Blind watermarking applied to image authentication, in 2001 IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, 2001. Proc. (ICASSP '01), vol. 3, 2001, 19771980.
[9]Venkatesan R.; Koon S.-M.; Jakubowski M. H.; Moulin P.: Robust image hashing, in ICIP, 2000.
[10]Roy S.; Sun Q.: Robust hash for detecting and localizing image tampering, in ICIP (6). IEEE, 2007, 117120.
[11]Tagliasacchi M.; Valenzise G.; Tubaro S.: Hash-based identification of sparse image tampering. IEEE Trans. Image Process., 18(11) (2009), 24912504.
[12]Cossalter M.; Tagliasacchi M.; Valenzise G.: Privacy-enabled object tracking in video sequences using compressive sensing, in Proc. of IEEE Int. Conf. on Advanced Video and Signal Based Surveillance (AVSS 2009), Genova, Italy, September 2009, 436441.
[13]Lin Y.-C.; Varodayan D. P.; Girod B.Image authentication using distributed source coding. IEEE Trans. Image Process., 21(1) (2012), 273283.
[14]Valenzise G.; Tagliasacchi M.; Tubaro S.; Cancelli G.; Barni M.: A compressive-sensing based watermarking scheme for sparse image tampering identification, in Proc. 16th IEEE Int. Conf. on Image Processing (ICIP 2009), IEEE, Cairo, Egypt, November 7–10, 2009, 12651268.
[15]Lukas J.; Fridrich J.; Goljan M.: Digital camera identification from sensor pattern noise. IEEE Trans. Info. Forensics and Secur., 1(2) (2006), 205214.
[16]Chen M.; Fridrich J. J.; Goljan M.; Lukás J.: Determining image origin and integrity using sensor noise, IEEE Trans. on Info. Forensics Secur., 3(1) (2008), 7490.
[17]Popescu A.; Farid H.: Exposing digital forgeries in color filter array interpolated images, IEEE Trans. Signal Process., 53(10) (2005) 39483959.
[18]Johnson M. K.; Farid H.: Exposing digital forgeries through chromatic aberration, in MM&Sec, Voloshynovskiy S., Dittmann J., and Fridrich J. J., eds., ACM, 2006, 4855.
[19]Yerushalmy I.; Hel-Or H.: Digital image forgery detection based on lens and sensor aberration, Int. J. Comput. Vis., 92(1) (2011), 7191.
[20]Milani S.; Tagliasacchi M.; Tubaro M.: Discriminating multiple jpeg compression using first digit features, in Proc. of the 37th Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP 2012), March 25–30, 2012, 22532256.
[21]Fu D.; Shi Y. Q.; Su W.: A generalized benfords law for jpeg coefficients and its applications in image forensics, in Proc. of SPIE, Security, Steganography and Watermarking of Multimedia Contents IX, vol. 6505, January 28–February 1, 2009, 3948.
[22]Liu H.; Heynderickx I.: A no-reference perceptual blockiness metric, in ICASSP, IEEE, 2008, 865868.
[23]Lin W. S.; Tjoa S. K.; Zhao H. V.; Liu K. J. R.: Digital image source coder forensics via intrinsic fingerprints, IEEE Trans. Info. Forensics Secur., 4(3) (2009), 460475.
[24]Fan Z.; de Queiroz R. L.: Maximum likelihood estimation of JPEG quantization table in the identification of bitmap compression history, in ICIP, 2000.
[25]Fan Z.; de Queiroz R. L.: Identification of bitmap compression history: JPEG detection and quantizer estimation, IEEE Trans. Image Process., 12(2) (2003), 230235.
[26]Lukás J.; Fridrich J.: Estimation of primary quantization matrix in double compressed jpeg images, in Proc. of DFRWS, 2003.
[27]Lin Z. C.; He J. F.; Tang X.; Tang C. K.: Fast, automatic and fine-grained tampered JPEG image detection via DCT coefficient analysis, Pattern Recognit., 42(11) (2009) 24922501.
[28]Bianchi T.; Piva A.: Detection of non-aligned double JPEG compression with estimation of primary compression parameters, in 2011 18th IEEE Int. Conf. on Image Processing (ICIP), September 2011, 19291932.
[29]Bianchi T.; De Rosa A.; Piva A.: Improved DCT coefficient analysis for forgery localization in JPEG images, in ICASSP, IEEE, 2011, 24442447.
[30]Bianchi T.; Piva A.: Detection of nonaligned double jpeg compression based on integer periodicity maps, IEEE Trans. Info. Forensics Secur., 7(2) (2012), 842848.
[31]Johnson M. K.; Farid H.: Exposing digital forgeries in complex lighting environments, IEEE Trans. Info. Forensics Secur., 2(3–1) (2007), 450461.
[32]Johnson M. K.; Farid H.: Exposing digital forgeries through specular highlights on the eye, in Information Hiding, Lecture Notes in Computer Science, Furon T., Cayre F., Doërr G. J., and Bas P., eds., vol. 4567, Springer, 2007, 311325.
[33]Zhang W.; Cao X.; Zhang J.; Zhu J.; Wang P.: Detecting photographic composites using shadows, in ICME, IEEE, 2009, 10421045.
[34]Conotter V.; Boato G.; Farid H.: Detecting photo manipulation on signs and billboards, in ICIP, IEEE, 2010, 17411744.
[35]Kurosawa K.; Kuroki K.; Saitoh N.: Ccd fingerprint method-identification of a video camera from videotaped images, in Proc. 1999 Int. Conf. on Image Processing, 1999. ICIP 99., vol. 3, 1999, 537540.
[36]Holst G. C.: CCD Arrays, Cameras, and Displays, 2nd edn. CD Publishing & SPIE Press, 1998.
[37]Amerini I.; Caldelli R.; Cappellini V.; Picchioni F.; Piva A.: Analysis of denoising filters for photo response non uniformity noise extraction in source camera identification, in 2009 16th Int. Conf. on Digital Signal Processing, July 2009, 17.
[38]Chen M.; Fridrich J.; Goljan M.; Lukás J.: Source digital camcorder identification using sensor photo response non-uniformity, in Proc. SPIE, 2007.
[39]Kivanc Mihcak M.; Kozintsev I.; Ramchandran K.: Spatially adaptive statistical modeling of wavelet image coefficients and its application to denoising, in Proc., 1999 IEEE Int. Conf. on Acoustics, Speech, and Signal Processing,, vol. 6, March 1999, 32533256.
[40]van Houten W.; Geradts Z. J. M. H.; Franke K.; Veenman C. J.: Verification of video source camera competition (camcom 2010), in ICPR Contests, Lecture Notes in Computer Science, Ünay D., Çataltepe Z., and Aksoy S., eds., vol. 6388. Springer, 2010, 2228.
[41]van Houten W.; Geradts Z. J. M. H.: Using sensor noise to identify low resolution compressed videos from youtube, in IWCF, Lecture Notes in Computer Science, Geradts Z. J. M. H., Franke K., and Veenman C. J., eds., vol. 5718. Springer, 2009, 104115.
[42]van Houten W.; Geradts Z. J. M. H.: Source video camera identification for multiply compressed videos originating from youtube. Digital Investigation, 6(1–2) (2009), 4860.
[43]Lee M.-J.; Kim K.-S.; Lee H.-Y.; Oh T.-W.; Suh Y.-H.; Lee H.-K.: Robust watermark detection against d-a/a-d conversion for digital cinema using local auto-correlation function,” in ICIP, IEEE, 2008, 425428.
[44]Lee M.-J.; Kim K.-S.; Lee H.-K.: Digital cinema watermarking for estimating the position of the pirate. IEEE Trans. Multimed., 12(7) (2010), 605621.
[45]Lee J.-W.; Lee M.-J.; Oh T.-W.; Ryu S.-J.; Lee H.-K.: Screenshot identification using combing artifact from interlaced video, in Proc. 12th ACM Workshop on Multimedia and Security, MM&Sec ’10, ACM, New York, NY, 2010, 4954 [online]. Available: http://doi.acm.org/10.1145/1854229.1854240
[46]Bayram S.; Sencar H. T.; Memon N. D.: Video copy detection based on source device characteristics: a complementary approach to content-based methods, in Proc. 1st ACM SIGMM Int. Conf. on Multimedia Information Retrieval, MIR 2008, Vancouver, British Columbia, Canada, October 30–31, 2008, Lew M. S., Bimbo A. D., and Bakker E. M., eds. ACM, 2008, 435442 [online]. Available: http://doi.acm.org/10.1145/1460096.1460167
[47]Wallace G.: The jpeg still picture compression standard. IEEE Trans. Consum. Electron., 38(1) (1992), xviiixxxiv.
[48]Li H.; Forchhammer S.: MPEG2 video parameter and no reference PSNR estimation, in Picture Coding Symp., 2009. PCS 2009, May 2009, 14.
[49]Ye S.; Sun Q.; Chang E.-C.: Detecting digital image forgeries by measuring inconsistencies of blocking artifact, in ICME, IEEE, 2007, 1215.
[50]Chen Y.; Challapali K. S.; Balakrishnan M.: Extracting coding parameters from pre-coded MPEG-2 video, in ICIP (2), 1998, 360364.
[51]Tagliasacchi M.; Tubaro S.: Blind estimation of the QP parameter in H.264/AVC decoded video, in 2010 11th Int. Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS), April 2010, 14.
[52]Valenzise G.; Tagliasacchi M.; Tubaro S.: Estimating QP and motion vectors in H.264/AVC video from decoded pixels, in Proc. 2nd ACM Workshop on Multimedia in Forensics, Security and Intelligence, MiFor ’10, ACM, New York, NY. 2010, 89–92 [online]. Available: http://doi.acm.org/10.1145/1877972.1877995
[53]He J.; Lin Z.; Wang L.; Tang X.: Detecting doctored JPEG images via DCT coefficient analysis, in Lecture Notes in Computer Science, Springer, 2006, 423435.
[54]Pevny T.; Fridrich J.: Estimation of primary quantization matrix for steganalysis of double-compressed JPEG images. Proc. SPIE, vol. 6819, pp. 681 911–681 911–13, 2008 [online]. Available: http://link.aip.org/link/PSISDG/v6819/i1/p681911/s1&Agg=doi
[55]Luo W.; Wu M.; Huang J.: MPEG recompression detection based on block artifacts, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conf. Series, Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, vol. 6819, March 2008.
[56]Wang W.; Farid H.: Exposing digital forgeries in video by detecting double quantization, in Proc. 11th ACM Workshop on Multimedia and Security, MM&Sec ’09, ACM, New York, NY, 2009, 3948 [online]. Available: http://doi.acm.org/10.1145/1597817.1597826
[57]Bestagini P.; Allam A.; Milani S.; Tagliasacchi M.; Tubaro S.: Video codec identification, in Proc. 37th Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP 2012), March 25–30, 2012, 22572260.
[58]Reibman A. R.; Poole D.: Characterizing packet-loss impairments in compressed video, in ICIP (5), IEEE, 2007, 7780.
[59]Reibman A. R.; Vaishampayan V. A.; Sermadevi Y.: Quality monitoring of video over a packet network. IEEE Trans. Multimed., 6(2) (2004), 327334.
[60]Naccari M.; Tagliasacchi M.; Tubaro S.: No-reference video quality monitoring for H.264/AVC coded video. IEEE Trans. Multimed., 11(5) (2009), 932946.
[61]Valenzise G.; Magni S.; Tagliasacchi M.; Tubaro S.: Estimating channel-induced distortion in H.264/AVC video without bitstream information, in 2010 Second Int. Workshop on Quality of Multimedia Experience (QoMEX), June 2010, 100105.
[62]Valenzise G.; Magni S.; Tagliasacchi M.; Tubaro S.: No-reference pixel video quality monitoring of channel-induced distortion. IEEE Trans. Circuits Sys. Video Technol., PP(99) (2011), 1.
[63]Stamm M. C.; Tjoa S. K.; Lin W. S.; Liu K. J. R.: Anti-forensics of JPEG compression, in ICASSP, IEEE, 2010, 16941697.
[64]Stamm M. C.; Tjoa S. K.; Lin W. S.; Liu K. J. R.: Undetectable image tampering through JPEG compression anti-forensics, in ICIP, IEEE, 2010, 21092112.
[65]Valenzise G.; Tagliasacchi M.; Tubaro S.: The cost of jpeg compression anti-forensics, in ICASSP, IEEE, 2011, 18841887.
[66]Valenzise G.; Nobile V.; Tagliasacchi M.; Tubaro S.: Countering jpeg anti-forensics, in ICIP, Macq B. and Schelkens P., eds., IEEE, 2011, 19491952.
[67]Stamm M. C.; Liu K. J. R.: Anti-forensics for frame deletion/addition in mpeg video, in ICASSP, IEEE, 2011, 18761879.
[68]Mondaini N.; Caldelli R.; Piva A.; Barni M.; Cappellini V.: Detection of malevolent changes in digital video for forensic applications, in Proc. of SPIE, Security, Steganography, and Watermarking of Multimedia Contents IX, E. J. D. III and Wong P. W., eds., vol. 6505, no. 1, SPIE, 2007, 65050T.
[69]Hsu C.-C.; Hung T.-Y.; Lin C.-W.; Hsu C.-T.: Video forgery detection using correlation of noise residue, in 2008 IEEE 10th Workshop on Multimedia Signal Processing, October 2008, 170174.
[70]Kobayashi M.; Okabe T.; Sato Y.: Detecting forgery from static-scene video based on inconsistency in noise level functions. IEEE Trans. Info. Forensics Secur., 5(4) (2010), 883892.
[71]Dempster A. P.; Laird N. M.; Rubin D. B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B, 39( 1977), 138.
[72]Wang W.; Farid H.: Exposing digital forgeries in interlaced and deinterlaced video. IEEE Trans. Info. Forensics Secur., 2(3–1) (2007), 438449.
[73]Zhang J.; Su Y.; Zhang M.: Exposing digital video forgery by ghost shadow artifact, in Proc. First ACM Workshop on Multimedia in Forensics, MiFor ’09, ACM, New York, NY, 2009, 4954 [online]. Available: http://doi.acm.org/10.1145/1631081.1631093
[74]Conotter V.; O'Brien J.; Farid H.: Exposing digital forgeries in ballistic motion. IEEE Trans. Info. Forensics Secur., PP(99) (2011), 1.
[75]Kang L.-W.; Hsu C.-Y.; Chen H.-W.; Lu C.-S.; Lin C.-Y.; Pei S.-C.: Feature-based sparse representation for image similarity assessment, IEEE Trans. Multimed., 13(5) (2011), 10191030.
[76]Kang L.-W.; Hsu C.-Y.; Chen H.-W.; Lu C.-S.: Secure sift-based sparse representation for image copy detection and recognition, in Proc. of IEEE Int. Conf. on Multimedia and Expo (ICME 2010), IEEE, Singapore, July 2010, 12481253.
[77]Wang W.; Farid H.: Exposing digital forgeries in video by detecting duplication, in MM&Sec, Kundur D., Prabhakaran B., Dittmann J., and Fridrich J. J., eds., ACM, 2007, 3542.
[78]Stamm M.; Liu K.: Anti-forensics for frame deletion/addition in mpeg video, in 2011 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), May 2011, 18761879.
[79]Stamm M.; Tjoa S.; Lin W.; Liu K.: Undetectable image tampering through jpeg compression anti-forensics, in 2010 17th IEEE Int. Conf. on Image Processing (ICIP), September 2010, 21092112.
[80]Dias Z.; Rocha A.; Goldenstein S.: First steps toward image phylogeny, in 2010 IEEE Int. Workshop on Information Forensics and Security (WIFS), December 2010, 16.
[81]De Rosa A.; Uccheddu F.; Costanzo A.; Piva A.; Barni M.: Exploring image dependencies: a new challenge in image forensics, in Proceeding of SPIE, 2010, X1X12.
[82]Dias Z.; Rocha A.; Goldenstein S.: Video phylogeny: recovering near-duplicate video relationships, in 2011 IEEE Int. Workshop on Information Forensics and Security (WIFS), December 2011.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

APSIPA Transactions on Signal and Information Processing
  • ISSN: 2048-7703
  • EISSN: 2048-7703
  • URL: /core/journals/apsipa-transactions-on-signal-and-information-processing
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 104
Total number of PDF views: 769 *
Loading metrics...

Abstract views

Total abstract views: 712 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th November 2017. This data will be updated every 24 hours.