Skip to main content
×
×
Home

Cooperative spectrum sensing based on adaptive activation of energy and preamble detector for cognitive radio networks

  • Ashish Rauniyar (a1) and Soo Young Shin (a1)
Abstract

In this paper, we propose a new cooperative spectrum sensing method based on adaptive activation of energy detector (ED) and preamble detector (PD) for cognitive radio networks. The ED performance is highly degraded under low signal to noise ratio and noise uncertainty condition. To alleviate the problem of ED and increase the sensing performance, we have used adaptive activation of energy efficient ED and reliable PD. As the first step of our proposed method, we have used ED to take a decision in the clear region where the detector can easily make its own local decision. There are two thresholds for the measured energy in the first step. If the sensed energy in the first step is between these two thresholds, the second step which involves the activation of cooperative PD is triggered to make an appropriate decision on the presence or absence of primary users's signal. Otherwise, the second step detector PD is not activated. In this way, we can enhance the detection performance and energy efficiency by taking the collaborative advantages of ED and PD at the same time. Simulation results validate the effectiveness of our proposed method as compared with conventional schemes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Cooperative spectrum sensing based on adaptive activation of energy and preamble detector for cognitive radio networks
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Cooperative spectrum sensing based on adaptive activation of energy and preamble detector for cognitive radio networks
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Cooperative spectrum sensing based on adaptive activation of energy and preamble detector for cognitive radio networks
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Corresponding author: S.Y. Shin Email: wdragon@kumoh.ac.kr
References
Hide All
[1] Force, S.P.T.: Spectrum policy task force report et docket no. 02-135. 2002.
[2] Mitola, J. III; Maguire, G.Q. Jr.: Cognitive radio: making software radios more personal. IEEE Personal Communications, 6(4) (1991), 1318.
[3] Haykin, S.: Cognitive radio: brain-empowered wireless communications. IEEE J. Selected Areas Commun., 23(2) (2005), 201220.
[4] Ganesan, G.; Ye, L.: Cooperative spectrum sensing in cognitive radio, part II: Multiuser networks. IEEE Trans. Wireless Commun., 6(6) (2007), 22142222.
[5] Fan, R.; Jiang, H.: Optimal multi-channel cooperative sensing in cognitive radio networks. IEEE Trans. Wireless Commun., 9(3) (2010), 11281138.
[6] Zhang, W.; Mallik, R.K.; Letaief, K.: Optimization of cooperative spectrum sensing with energy detection in cognitive radio networks. IEEE Trans. Wireless Commun., 8(12) (2009), 57615766.
[7] Mishra, S.M.; Sahai, A.; Brodersen, R.W.: Cooperative sensing among cognitive radios. in IEEE Int. Conf. Commun., Istanbul, Turkey, 2006. ICC’06, vol. 4, 2006, 16581663.
[8] Lu, J.; Wei, P.: Improved cooperative spectrum sensing based on the reputation in cognitive radio networks. Int. J. Electron., 102(5) (2015), 855863.
[9] Park, K.Y.: Performance evaluation of energy detectors. IEEE Trans. Aerospace Electron. Syst., AES-14(2) (1978), 237241.
[10] Shin, S.Y.; Ramachandran, I.; Roy, S.: New energy efficient clear channel assessment for wireless network. KSII Transactions on Internet and Information Systems (TIIS), 5(8) (2011), 14041422.
[11] Sun, C.; Zhang, W.; Letaief, K.B.: Cooperative spectrum sensing for cognitive radios under bandwidth constraints. in IEEE Wireless Communications and Networking Conf., WCNC Kowloon, China, 2007, 2007, 15.
[12] Liu, Y. et al. : Adaptive double threshold energy detection based on markov model for cognitive radio. PloS ONE, 12(5) (2017), e0177625.
[13] Vien, Q.-T.; Nguyen, H.X.; Trestian, R.; Shah, P.; Gemikonakli, O.: A hybrid double-threshold based cooperative spectrum sensing over fading channels. IEEE Trans. Wireless Commun., 15(3) (2016), 18211834.
[14] Zhu, J.; Xu, Z.; Wang, F.; Huang, B.; Zhang, B.: Double threshold energy detection of cooperative spectrum sensing in cognitive radio. in 3rd Int. Conf. on Cognitive Radio Oriented Wireless Networks and Communications, CrownCom 2008, Singapore, Singapore, 2008, 15.
[15] Choi, Y.-J.; Xin, Y.; Rangarajan, S.: Overhead-throughput tradeoff in cooperative cognitive radio networks. in IEEE Wireless Commun. Networking Conf., WCNC 2009, Budapest, Hungary, 2009, 16.
[16] Paul, R.; Pak, W.; Choi, Y.-J.: Selectively triggered cooperative sensing in cognitive radio networks. IET Communications, 8(15) (2014), 27202728.
[17] Alemseged, Y.; Sun, C.; Tran, H.; Harada, H.: Distributed spectrum sensing with two-stage detection for cognitive radio. in IEEE 70th Vehicular Technology Conf. Fall (VTC 2009-Fall), Anchorage, AK, USA, 2009, 15.
[18] Triwicaksono, D.; Rauniyar, A.; Shin, S.Y.: Cascaded energy detector and matched filter-clear channel assessment for wireless network. Wireless Personal Communications, 84(4) (2015), 24272443.
[19] Lehtomäki, J.J.; Vartiainen, J.; Vuohtoniemi, R.; Saarnisaari, H.: ‘Adaptive fcme-based threshold setting for energy detectors. in Proc. 4th Int. Conf. on Cognitive Radio and Advanced Spectrum Management. ACM, Barcelona, Spain, 2011, 3337.
[20] Nagaraj, S.; Khan, S.; Schlegel, C.; Burnashev, M.V.: Differential preamble detection in packet-based wireless networks. IEEE Trans. Wireless Commun., 8(2) (2009), 599607.
[21] Peh, E.C.; Liang, Y.-C.; Guan, Y.L.; Zeng, Y.: Cooperative spectrum sensing in cognitive radio networks with weighted decision fusion schemes. IEEE Trans. Wireless Commun., 9(12) (2010), 38383847.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

APSIPA Transactions on Signal and Information Processing
  • ISSN: 2048-7703
  • EISSN: 2048-7703
  • URL: /core/journals/apsipa-transactions-on-signal-and-information-processing
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 20
Total number of PDF views: 119 *
Loading metrics...

Abstract views

Total abstract views: 193 *
Loading metrics...

* Views captured on Cambridge Core between 7th March 2018 - 22nd June 2018. This data will be updated every 24 hours.