Skip to main content Accesibility Help
×
×
Home

Digital acoustics: processing wave fields in space and time using DSP tools

  • Francisco Pinto (a1), Mihailo Kolundžija (a1) and Martin Vetterli (a1)
Abstract

Systems with hundreds of microphones for acoustic field acquisition, or hundreds of loudspeakers for rendering, have been proposed and built. To analyze, design, and apply such systems requires a framework that allows us to leverage the vast set of tools available in digital signal processing in order to achieve intuitive and efficient algorithms. We thus propose a discrete space–time framework, grounded in classical acoustics, which addresses the discrete nature of the spatial and temporal sampling. In particular, a short-space/time Fourier transform is introduced, which is the natural extension of the localized or short-time Fourier transform. Processing in this intuitive domain allows us to easily devise algorithms for beam-forming, source separation, and multi-channel compression, among other useful tasks. The essential space band-limitedness of the Fourier spectrum is also used to solve the spatial equalization task required for sound field rendering in a region of interest. Examples of applications are shown.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Digital acoustics: processing wave fields in space and time using DSP tools
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Digital acoustics: processing wave fields in space and time using DSP tools
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Digital acoustics: processing wave fields in space and time using DSP tools
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Corresponding author: Francisco Pinto Email: francisco.pinto@epfl.ch
References
Hide All
[1] Fourier, J.: Mémoire sur la propagation de la chaleur dans les corps solides [memoir on the propagation of heat in solid bodies], Nouveau Bulletin des Sciences par la Societe Philomatique de Paris, 6 (1807), 215221.
[2] Van Veen, B.; Buckley, K.: Beamforming: a versatile approach to spatial filtering. IEEE ASSP Mag., 5 (2) (1988), 424.
[3] Veen, A.V.D.: Algebraic methods for deterministic blind beamforming. Proc. IEEE, 86 (10) (1998), 19872008.
[4] Gerzon, M.: Periphony: with-height sound reproduction. J. Audio Eng. Soc., 21 (1) (1973), 210.
[5] Daniel, J.; Nicol, R.; Moreau, S.: Further investigations of high order ambisonics and wavefield synthesis for holophonic sound imaging. Preprint 114th Conv. Audio Eng. Soc., 2003.
[6] Berkhout, A.: A holographic approach to acoustic control. J. Audio Eng. Soc., 36 (12) (1988), 977995.
[7] Berkhout, A.; de Vries, D.; Vogel, P.: Acoustic control by wave field synthesis. J. Acoust. Soc. Am., 93 (5) (1993), 27642778.
[8] Ahrens, J.; Spors, S.: Sound field reproduction using planar and linear arrays of loudspeakers. IEEE Trans. Audio, Speech, Lang. Proc., 18 (8) (2010), 20382050.
[9] Kolundžija, M.; Faller, C.; Vetterli, M.: Reproducing sound fields using MIMO acoustic channel inversion. J. Audio Eng. Soc., 59 (10) (2011), 721734.
[10] Neumann, J.: MEMS (microelectromechanical systems) audio devices – dreams and realities. Preprint 115th Conv. Audio Eng. Soc., 2003.
[11] Morse, P.; Ingard, K.: Theoretical Acoustics, Princeton University Press, 1968. Princeton, New Jersey, USA.
[12] Williams, E.: Fourier Acoustics, Academic Press, 1999. Waltham, Massachusetts, USA.
[13] Allen, J.; Berkley, D.: Image method for efficiently simulating small-room acoustics. J. Acoust. Soc. Am., 65 (1979), 943950.
[14] Ryan, J.G.; Goubran, R.A.: Near-field beamforming for microphone arrays. IEEE Int. Conf. Acoust. Speech, Sig. Proc., 1 IEEE, (1997), 363366.
[15] Ajdler, T.; Sbaiz, L.; Vetterli, M.: The plenacoustic function and its sampling. IEEE Trans. Signal Process., 54 (2006), 37903804.
[16] Kennedy, R.A., Sadeghi, P.; Abhayapala, T.D., Jones, H.M.: Intrinsic limits of dimensionality and richness in random multipath fields, IEEE Trans. Signal Process., 55 (6) (2007), 25422556.
[17] Pinto, F.; Vetterli, M.: Space-time-frequency processing of acoustic wave fields: theory, algorithms, and applications. IEEE Trans. Signal Process., 58 (2010), 46084620.
[18] Gabor, D.: Theory of communication. J. Inst. Electr. Eng., 93 (1946), 429457.
[19] Vaidyanathan, P.: Multirate Systems And Filter Banks, Prentice-Hall, 1992. Upper Saddle River, New Jersey, USA.
[20] Vetterli, M.; Kovacevic, J.: Wavelets and subband coding, Prentice-Hall, 1995. Upper Saddle River, New Jersey, USA.
[21] Vetterli, M.; Kovacevic, J.; Goyal, V.K.: Foundations of Signal Processing, Cambridge University Press, 2014. Cambridge, England.
[22] Malvar, H.: Signal Processing with Lapped Transforms, Artech House Publishers, 1992. Boston, USA.
[23] Johnson, D.: Dudgeon, D.: Array Signal Processing, Prentice-Hall, 1993. Upper Saddle River, New Jersey, USA.
[24] Oppenheim, A.; Schafer, R.: Discrete-Time Signal Processing, Prentice-Hall, 1998. Upper Saddle River, New Jersey, USA.
[25] Oliver, B.; Shannon, C.: Communication System Employing Pulse Code Modulation, US Patent Patent 2 801 281, 1957.
[26] Johnston, J.: Transform coding of audio signals using perceptual noise criteria. IEEE J. Sel. Areas Commun., 5 (2) (1988), 314323.
[27] Johnston, J.; Ferreira, A.: Sum-difference stereo transform coding. IEEE Inter. Conf. on Acoustics, Speech, and Signal Processing., 2 (1992), 569572.
[28] Herre, J.; Brandenburg, K.; Lederer, D.: Intensity Stereo Coding, in Audio Eng. Soc. 96th Conv., 1994.
[29] Faller, C.; Baumgarte, F.: Binaural cue coding: a novel and efficient representation of spatial audio. IEEE Inter. Conf. on Acoustics, Speech, and Signal Processing., 2 (2002), 18411844.
[30] Herre, J.; Faller, C.; Ertel, C.; Hilpert, J.; Hoelzer, A.; Spenger, C.: Mp3 surround: efficient and compatible coding of multi-channel audio, in Audio Eng. Soc. 116th Conv., 2004.
[31] Yang, D.; Hongmei, A.; Kyriakakis, C.; Kuo, C.-C.: High-fidelity multichannel audio coding with Karhunen–Loeve transform. IEEE Trans. Speech, Audio Process., 11 (4) (2003), 365380.
[32] Blauert, J.: Spatial Hearing: The Psychophysics of Human Sound Localization, The MIT Press, 1996. Cambridge, Massachusetts, USA.
[33] Pinto, F.; Vetterli, M.: Audio wave field encoding, Patent US 8,219,409, 07 10, 2012.
[34]ISO/IEC: Coding of moving pictures and associated audio for digital storage media at up to about 1.5 mbit/s – part 3: Audio, 1993, TC1/SC29/WG11.
[35] Bosi, M.; Goldberg, R.: Introduction to Digital Audio Coding and Standards, Springer, 2002. New York City, USA.
[36] Corteel, E.: Synthesis of directional sources using wave field synthesis, possibilities, and limitations. EURASIP J. Appl. Signal. Process., 2007 (1) (2007), 188–188.
[37] Gauthier, P.; Berry, A.: Adaptive wave field synthesis for sound field reproduction: theory, experiments, and future perspectives. J. Audio Eng. Soc., 55 (12) (2007), 1107.
[38] Cooper, D.; Shiga, T.: Discrete-matrix multichannel stereo. J. Audio Eng. Soc., 20 (5) (1972), 346360.
[39] Gerzon, M.: Practical Periphony: the Reproduction of full-sphere sound, Preprint 65th Convention Audio Engineering Society, 1980.
[40] Ward, D.B.; Abhayapala, T.D.: Reproduction of a plane-wave sound field using an array of loudspeakers. IEEE Trans. Speech Audio Process., 9 (6) (2001), 697707.
[41] Elliott, S.J.; Nelson, P.A.: Active noise control. IEEE Signal Process. Mag., 10 (4) (1993), 1235.
[42] Kuo, S.M.; Morgan, D.R.: Active noise control: a tutorial review. Proc. IEEE, 87 (6) (1999), 943973.
[43] Miyoshi, M.; Kaneda, Y.: Inverse filtering of room acoustics. IEEE Trans. Acoust., Speech, Signal Process., 36 (2) (1988), 145152.
[44] Kirkeby, O.; Nelson, P.: Reproduction of plane wave sound fields. J. Acoust. Soc. Am., 94 (1993), 2992.
[45] Kirkeby, O.; Nelson, P.A., Orduna-Bustamante, F.; Hamada, H.: Local sound field reproduction using digital signal processing. J. Acoust. Soc. Am., 100 (1996), 1584.
[46] Verheijen, E.: Sound Reproduction by Wave Field Synthesis, Ph.D. dissertation, Delft University of Technology, 1997.
[47] Spors, S.: Extension of an analytic secondary source selection criterion for wave field synthesis. Preprint 123th Convention Audio Engineering Society, 2007.
[48] Kirkeby, O.; Nelson, P.; Hamada, H.; Orduna-Bustamante, F.: Fast deconvolution of multichannel systems using regularization. IEEE Trans. Speech Audio Process., 6 (2) (1998), 189194.
[49] Sturm, J.: Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones. Optim. Methods Softw., 11 (1–4) (1999), 625653.
[50] Toh, K.-C.; Todd, M.J.; Tütüncü, R. H.: Sdpt3–a matlab software package for semidefinite programming, version 1.3, Optim. Methods Softw., 11 (1–4) (1999), 545581.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

APSIPA Transactions on Signal and Information Processing
  • ISSN: 2048-7703
  • EISSN: 2048-7703
  • URL: /core/journals/apsipa-transactions-on-signal-and-information-processing
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed