Skip to main content
×
×
Home

The origin of digital information devices: the Silicon Audio and its family

  • Akihiko Sugiyama (a1) and Masahiro Iwadare (a2)
Abstract

This paper presents the origin of digital information devices, the Silicon Audio, and its family. The Silicon Audio is the digital counterpart of the Walkman and the ancestor of the iPod. It employs the MPEG / Audio Layer II algorithm for data compression, which was standardized by ISO (International Standardization Organization)/ IEC (International Electrotechnical Commission). A semiconductor memory card is equipped with to store the compressed signal. Since it has no mechanical movement, it is robust against shocks and vibrations that had been a serious problem for portable audio players. The background of the development, implementations, challenges toward a commercial product, and impact on audio players as well as personal information devices are discussed with its family including a video derivative, the Silicon View.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The origin of digital information devices: the Silicon Audio and its family
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The origin of digital information devices: the Silicon Audio and its family
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The origin of digital information devices: the Silicon Audio and its family
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-ncnd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Corresponding author
Corresponding author: A. Sugiyama Email: a.sugiyama@ieee.org
References
Hide All
[1]32 kbit/s adaptive differential PCM (ADPCM). Recommendation G.721, ITU-T, November 1984.
[2]7 kHz audio-coding within 64 kbit/s. Recommendation G.722, ITU-T, November 1988.
[3]Extensions of Recommendation G.721 adaptive differential pulse code modulation to 24 and 40 kbit/s for digital circuit multiplication equipment application. Recommendation G.723, ITU-T, November 1988.
[4]40, 32, 24, 16 kbit/s Adaptive Differential Pulse Code Modulation (ADPCM). Recommendation G.726, ITU-T, December 1990.
[5]Coding of speech at 16 kbit/s using low-delay code excited linear prediction. Recommendation G.728, ITU-T, September 1992.
[6] Davidson, G.A.; Fielder, L.; Antill, M.: Low-complexity transform coder for satellite link applications, in 89th Convention of the Audio Engineering Society (AES), 2966, September 1990.
[7] Tsutsui, K.; Suzuki, H.; Shimoyoshi, O.; Sonohara, M.; Akagiri, K.; Heddle, R.M.: ATRAC: adaptive transform acoustic coding for MiniDisc, in 93rd Convention of the AES, 3456, October 1992.
[8] Lokhoff, G.C.P.: dcc – Digital Compact Cassette. IEEE Trans., CE-37 (3) (1991), 702706.
[9]ISO/IEC 11172-3: Coding of moving pictures and associated audio for digital storage media at up to about 1.5 Mb/s. Part 3: Audio, August 1993.
[10]Announcing Silicon Audio, Pocket-sized music player using semiconductor memory cards. NEC Press Release, 1 December 1994. [on line] Available at http://www.nec.co.jp/press/en/9412/0101.html (accessed 29 September 2017).
[11]Announcing Silicon View, a hand-held video player with a semiconductor memory card. NEC Press Release, 12 October 1995. [on line] Available at http://www.nec.co.jp/press/en/9510/1202.html (accessed 29 September 2017).
[12]iPod (5th generation) in “Identify your iPod model”. [on line] Available at https://support.apple.com/en-us/HT204217 (accessed 29 September 2017).
[13] Sugiyama, A. et al. : The Silicon Audio, an audio-data compression and storage system with a semiconductor memory card. IEEE Trans. Consumer Electron., 41 (1) (1995), 186194.
[14] Sugiyama, A. et al. : A new implementation of the Silicon Audio player based on an MPEG/Audio decoder LSI. IEEE Trans. Consumer Electron., 43 (2) (1997), 207215.
[15] Iwadare, M.; Kushiyama, C.; Ohdate, N.: A card audio player with trick-play functions, in Proc. of the IEICE General Conf., A-4-58, March 1998, p. 167.
[16] Bergman, S. et al. : The SR Report on the MPEG/Audio subjective listening test. ISO / IEC JTC1 / SC29 / WG11 MPEG91 / 010, May 1991.
[17] Fuchs, H.: Report on the MPEG/Audio subjective listening tests in Hannover. ISO / IEC JTC1 / SC29 / WG11 MPEG91 / 0331, November 1991.
[18]μ PD 77220 user's manual, IEM-5078, NEC Corporation, June 1988.
[19] Iwadare, M. et al. : A single-chip MPEG/audio decoder LSI based on a compact decoding algorithm, in Proc. of the IEEE Workshop on VLSI Sig. Proc., September 1995, 118125.
[20] Iwadare, M. et al. : A single-chip MPEG/audio decoder LSI based on a compact decoding algorithm. J. VLSI Sig. Proc., 16 (1997), 2530.
[21]ISO/IEC 13818-3: ISO/IEC 11172-3 compatible low bit rate multi-channel coding system, and conventional stereo coding at lower sampling frequencies. March 1995.
[22] Vaidyanathan, P.P.: Multirate systems and filter banks, Prentice-Hall, Englewood Cliffs, NJ, 1993.
[23] Narasimha, M.J.; Peterson, A.M.: On the computation of the discrete cosine transform. IEEE Trans., COM-26 (1978), 934946.
[24] Iwadare, M.; Nishitani, T.: A fast subband analysis/synthesis algorithm for MPEG/Audio, in 1992 IEICE Spring Nat'l Convention Rec., A-194, March 1992 (in Japanese).
[25] Kobayashi, O.; Eda, H.: Flash EEPROM: ready for use in external memory, in Nikkei Electronics, 11 April 1994, 7591 (in Japanese).
[26] Sugiyama, A.: MPEG/Audio standardization and its ultimate application. Electronics, 40 (6) (1995), 5659 (in Japanese).
[27] Grochowski, E.; Fontana, R.E. Jr.: An analysis of flash and HDD technology trends, in Flash Memory Summit, Santa Clara, CA, August 2011.
[28] Matsuo, H.; Ohdate, N.; Mitsuhashi, K.; Iwadare, M.: Development of a Silicon View player based on an MPEG-1 audio/video decoder LSI, in IEICE General Conf., A-198, March 1996 (in Japanese).
[29] Iwadare, M.; Ohdate, N.; Matsuo, H.: The portable Silicon View player, in Proc. IIEEJ Annual Conf., June 1996, 3233.
[30]ISO/IEC 11172-2: Coding of moving pictures and associated audio for digital storage media at up to about 1.5 Mb/s. Part 2: Video, August 1993.
[31] Katayama, Y.; Tamitani I., Taniguchi, A.; Ooi, Y.: A single-chip MPEG1 Audio/Video decoder using macrocore and cell-base implementation, in Proc. of IEEE Workshop on VLSI Signal Proc., October 1995, 431440.
[32] Iwadare, M.; Sasaki, E.; Ohdate, N.: A portable multimedia guide terminal with a semiconductor memory card, in Proc. IEICE Society Conf., A-4-30, September 1997, p. 100.
[33] Iwadare, M.; Matsuo, H.; Ohdate, N.; Sato, M.: A shopping navigation terminal with user interactive functions, in Proc. IEICE Society Conf., A-107, September 1996.
[34]Enjoy hifi sound while jogging. The Asahi, 2 December 1994, p. 3.
[35]Shock-proof music for 24 minutes with a business-card size semiconductor memory. The Nikkei, 2 December 1994, p. 12.
[36] Houlder, V.: Music on the cards. Financial Times UK, 2 December 1994, p. 12.
[37]NEC unveils music by credit card. International Herald Tribune, 2 December 1994, p. 19.
[38]Technology you can use at home. Time, 17 July 1995, 4648.
[39]Goodbye CDs?. Future Music, March 1995, 3940.
[40]ISO/IEC 14496-3: Coding of audio-visual objects. December 1999.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

APSIPA Transactions on Signal and Information Processing
  • ISSN: 2048-7703
  • EISSN: 2048-7703
  • URL: /core/journals/apsipa-transactions-on-signal-and-information-processing
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Sugiyama and Iwadare supplementary material
Sugiyama and Iwadare supplementary material 2

 Unknown (47 KB)
47 KB
PDF
Supplementary materials

Sugiyama and Iwadare supplementary material
Sugiyama and Iwadare supplementary material 1

 PDF (6.6 MB)
6.6 MB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed