Skip to main content Accessibility help
×
×
Home

Recent advances on active noise control: open issues and innovative applications

  • Yoshinobu Kajikawa (a1), Woon-Seng Gan (a2) and Sen M. Kuo (a3)
Abstract

The problem of acoustic noise is becoming increasingly serious with the growing use of industrial and medical equipment, appliances, and consumer electronics. Active noise control (ANC), based on the principle of superposition, was developed in the early 20th century to help reduce noise. However, ANC is still not widely used owing to the effectiveness of control algorithms, and to the physical and economical constraints of practical applications. In this paper, we briefly introduce some fundamental ANC algorithms and theoretical analyses, and focus on recent advances on signal processing algorithms, implementation techniques, challenges for innovative applications, and open issues for further research and development of ANC systems.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Recent advances on active noise control: open issues and innovative applications
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Recent advances on active noise control: open issues and innovative applications
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Recent advances on active noise control: open issues and innovative applications
      Available formats
      ×
Copyright
Corresponding author
Corresponding author: Y. Kajikawa Email: kaji@kansai-u.ac.jp
References
Hide All
[1]Nelson, P.A.; Elliott, S.J.: Active Control of Sound, Academic Press, San Diego, 1992.
[2]Kuo, S.M.; Morgan, D.R.: Active Noise Control Systems – Algorithms and DSP Implementations, Wiley, New York, 1996.
[3]Fuller, C.R.; Elliott, S.J.; Nelson, P.A.: Active Control of Vibration, Academic Press, San Diego, 1996.
[4]Hansen, C.H.; Snyder, S.D.: Active Control of Noise and Vibration, E&FN Spon, London, 1997.
[5]Elliott, S.J.: Signal Processing for Active Control, Academic Press, San Diego, 2001.
[6]Tokhi, O.; Veres, S.: Active Sound and Vibration Control: Theory and Applications, Institute of Electrical Engineers, London, 2002.
[7]Elliott, S.J.; Nelson, P.A.: Active noise control. IEEE Signal Process. Mag., 10 (4) (1993), 1235.
[8]Kuo, S.M.; Morgan, D.R.: Active noise control: a tutorial review. Proc. IEEE, 87 (6) (1999), 943973.
[9]Lueg, P.: Process of silencing sound oscillations, U.S. Patent 2043416, June 9, 1936.
[10]Widrow, B.; Stearns, S.D.: Adaptive Signal Processing, Prentice-Hall, Englewood Cliffs, NJ, 1985.
[11]Haykin, S.: Adaptive Filter Theory, 4th ed., Prentice Hall, Upper Saddle River, NJ, 2002.
[12]Lee, K.A.; Gan, W.S.; Kuo, S.M.: Subband Adaptive Filtering: Theory and Implementation, Wiley, West Sussex, 2009.
[13]Kuo, S.M.; Gan, W.S.: Digital Signal Processors: Architectures, Implementations, and Applications, Prentice Hall, Upper Saddle River, NJ, 2005.
[14]Kuo, S.M.; Lee, B.H.: Real-Time Digital Signal Processing: Implementations and Applications, Wiley, West Sussex, 2006.
[15]Gan, W.S.; Kuo, S.M.: Embedded Signal Processing with the Micro Signal Architecture, Wiley-IEEE Press, Hoboken, NJ, 2007.
[16]Burgess, C.: Active adaptive sound control in a duct: a computer simulation. J. Acoust. Soc. Am., 70 (3) (1981), 715726.
[17]Usagawa, T.; Shimada, Y.; Nishimura, Y.; Ebata, M.: An active noise control headset for crew members of ambulance. IEICE Trans. Fundam., E84-A (2) (2001), 475478.
[18]Gan, W.S.; Mitra, S.; Kuo, S.M.: Adaptive feedback active noise control headset: implementation, evaluation and its extensions. IEEE Trans. Consum. Electron., 51 (3) (2005), 975982.
[19]Kuo, S.M.; Mitra, S.; Gan, W.S.: Active noise control system for headphone applications. IEEE Trans. Control Syst. Technol., 14 (2) (2006), 331335.
[20]Chang, C.Y.; Li, S.T.: Active noise control in headsets by using a low-cost microcontroller. IEEE Trans. Ind. Electron., 58 (5) (2011), 19361942.
[21]Datta, A.: Adaptive Internal Model Control, Springer, New York, 1998.
[22]Elliott, S.J.; Sutton, T.J.: Performance of feedforward and feedback systems for active control. IEEE Trans. Speech Audio Process. 4 (3) (1996), 214223.
[23]Morgan, D.R.: An analysis of multiple correlation cancellation loops with a filter in the auxiliary path. IEEE Trans. Acoust. Speech Signal Process., ASSP28 (4) (1980), 454467.
[24]Eriksson, L.J.; Allie, M.C.: Use of random noise for on-line transducer modeling in an adaptive attenuation system. J. Acoust. Soc. Am., 85 (2) (1989), 797802.
[25]Bao, C.; Sas, P.; Brussel, H.V.: Adaptive active control of noise in 3-D reverberant enclosures. J. Sound Vib., 161 (3) (1993), 501514.
[26]Kuo, S.M.; Vijayan, D.: A secondary path modeling technique for active noise control systems. IEEE Trans. Speech Audio Process., 5 (4) (1997), 374377.
[27]Zhang, M.; Lan, H.; Ser, W.: Cross-updated active noise control system with on-line secondary path modeling. IEEE Trans. Speech Audio Process., 9 (5) (2001), 598602.
[28]Akhtar, M.T.; Abe, M.; Kawamata, M.: A new structure for feedforward active noise control systems with improved online secondary path modeling. IEEE Trans. Speech Audio Process., 13 (5) (2005), 10821088.
[29]Lan, H.; Zhang, M.; Ser, W.: An active noise control system using online secondary path modeling with reduced auxiliary noise. IEEE Signal Process. Lett., 9 (1) (2002), 1618.
[30]Zhang, M.; Lan, H.; Ser, W.: A robust online secondary path modeling method with auxiliary noise power scheduling strategy and norm constraint manipulation. IEEE Trans. Speech Audio Process., 11 (1) (2003), 4553.
[31]Akhtar, M.T.; Abe, M.; Kawamata, M.: A new variable step size LMS algorithm-based method for improved online secondary path modeling in active noise control systems. IEEE Trans. Audio Speech Lang. Process., 14 (2) (2006), 720726.
[32]Akhtar, M.T.; Abe, M.; Kawamata, M.: Noise power scheduling in active noise control systems with online secondary path modeling. IEICE Electron. Express, 4 (2) (2007), 6671.
[33]Carini, A.; Malatini, S.: Optimal variable step-size NLMS algorithms with auxiliary noise power scheduling for feedforward active noise control. IEEE Trans. Audio Speech Lang. Process., 16 (8) (2008), 13831395.
[34]Davari, P.; Hassanpour, H.: Designing a new robust on-line secondary path modeling technique for feedforward active noise control systems. Signal Process., 89 (6) (2009), 11951204.
[35]Davari, P.; Hassanpour, H.: A self-tuning feedforward active noise control system. IEICE Electron. Express, 6 (5) (2009), 230236.
[36]Liu, J.; Xiao, Y.; Sun, J.; Xu, L.: Analysis of online secondary-path modeling with auxiliary noise scaled by residual noise signal. IEEE Trans. Audio Speech Lang. Process., 18 (8) (2010), 19781993.
[37]Wu, M.; Qiu, X.; Xu, B.; Li, N.: A note on cancellation path modeling signal in active noise control. Signal Process., 86 (9) (2006), 23182325.
[38]Akhtar, M.T.; Abe, M.; Kawamata, M.; Nishihara, A.: Online secondary path modeling in multichannel active noise control systems using variable step size. Signal Process., 88 (8) (2008), 20192029.
[39]Zhang, M.; Lan, H.; Ser, W.: On comparison of online secondary path modeling methods with auxiliary noise. IEEE Trans. Speech Audio Process., 13 (4) (2005), 618628.
[40]Kuo, S.M.; Wang, M.: Parallel adaptive on-line error-path modeling algorithm for active noise control systems. Electron. Lett., 28 (4) (1992), 375377.
[41]Kuo, S.M.; Wang, M.; Chen, K.: Active noise control system with parallel on-line error path modeling algorithm. J. Noise Control Eng., 39 (3), (1992) 119127.
[42]Zhang, Q.Z.; Gan, W.S.: A model predictive algorithm for active noise control with online secondary path modeling. J. Sound Vib., 270 (4–5) (2004), 10561066.
[43]Fujii, K.; Ohga, J.: Method to update the coefficients of the secondary path filter under active noise control. Signal Process., 81 (2) (2001), 381387.
[44]Kim, B.J.; Swanson, D.C.: Linear independence method for system identification/secondary path modeling for active control. J. Acoust. Soc. Am., 118 (3) (2005), 14521468.
[45]Jin, G.Y.; Yang, T.J.; Xiao, Y.H.; Liu, Z.G.: A simultaneous equation method-based online secondary path modeling algorithm for active noise control. J. Sound Vib., 303 (3–5) (2007), 455474.
[46]Maeda, Y.; Yoshida, T.: An active noise control without estimation of secondary-path and using simultaneous perturbation, in Proc. of ACTIVE 1999, 1999, 985994.
[47]Kajikawa, Y.; Nomura, Y.: Active noise control system without secondary path model, in Proc. of ISCAS, vol. 4, 2000, 349352.
[48]Kajikawa, Y.; Nomura, Y.: Frequency domain active noise control system without a secondary path model via perturbation method. IEICE Trans. Fundam., E84-A (12) (2001), 30903098.
[49]Mori, T.; Kajikawa, Y.; Nomura, Y.: Frequency domain active noise control systems using the time difference simultaneous perturbation method. IEICE Trans. Fundam., E86-A (4) (2003), 946949.
[50]Tokoro, Y.; Kajikawa, Y.; Nomura, Y.: Improvement of the stability and cancellation performance for the active noise control system using the simultaneous perturbation method. IEICE Trans. Fundam., E90-A (8) (2007), 15551563.
[51]Zhou, Y.L.; Zhang, Q.Z.; Li, X.D.; Gan, W.S.: On the use of an SPSA-based model-free feedback controller in active noise control for periodic disturbances in a duct. J. Sound Vib., 317 (3–5) (2008), 456472.
[52]Fujii, K.; Muneyasu, M.; Ohga, J.: Simultaneous equations method not requiring the secondary path filter, in Proc. of ACTIVE 99, 1999, 941948.
[53]Fujii, K.; Yamaguchi, K.; Hashimoto, S.; Fujita, Y.; Muneyasu, M.: Verification of simultaneous equations method by an experimental active noise control system. Acoust. Sci. Technol., 27 (5) (2006), 270277.
[54]Fujii, K.; Hashimoto, S.; Muneyasu, M.: Application of a frequency domain processing technique to the simultaneous equations method. IEICE Trans. Fundam., E86-A (8) (2003), 20202027.
[55]Muneyasu, M.; Hisayasu, O.; Fujii, K.; Hinamoto, T.: An active noise control system based on simultaneous equations method without auxiliary filters. IEICE Trans. Fundam., E89-A (4) (2006), 960968.
[56]Muneyasu, M.; Wakasugi, Y.; Hisayasu, O.; Fujii, K.; Hinamoto, T.: Hybrid active noise control systems based on the simultaneous equations method. IEICE Trans. Fundam., E84-A (2) (2001), 479481.
[57]Fujii, K.; Nakatani, Y.; Muneyasu, M.: A new active sinusoidal noise control system using the simultaneous equations technique. IEICE Trans. Fundam., E85-A (8) (2002), 18771881.
[58]Fujii, K.; Kashihara, K.; Muneyasu, M.; Morimoto, M.: Application of cascade connection of recursive and non-recursive filters to active noise control system using simultaneous equations method. IEICE Trans. Fundam., E94-A (10) (2011), 18991906.
[59]Muneyasu, M.; Wakasugi, Y.; Kagawa, K.; Fujii, K.; Hinamoto, T.: Distributed active noise control systems based on simultaneous equations methods. IEICE Trans. Fundam., E87-A (4) (2004), 807815.
[60]Muneyasu, M.; Kagawa, K.; Fujii, K.; Hinamoto, T.: Performance improvement for d istributed active noise control systems based on simultaneous equations method. IEICE Trans. Fundam., E88-A (7) (2006), 17601764.
[61]Okamoto, Y.; Kashihara, K.; Fujii, K.; Muneyasu, M.; Morimoto, M.: Verification of extension of simultaneous equations method extended to multiple-channel active noise control systems. Acoust. Sci. Technol., 31 (3) (2010), 213221.
[62]Zhou, D.; DeBrunner, V.: A new active noise control algorithm that requires no secondary path identification based on the SPR property. IEEE Trans. Signal Process., 55 (5) (2007), 17191729.
[63]Wu, M.; Chen, G.; Qiu, X.: An improved active noise control algorithm without secondary path identification based on the frequency-domain subband architecture. Trans. Audio Speech Lang. Process., 16 (8) (2008), 14091419.
[64]Chang, C.Y.; Chen, D.R.: Active noise cancellation without secondary path identification by using an adaptive genetic algorithm. IEEE Trans. Instrum. Meas., 59 (9) (2010), 23152327.
[65]Yuan, J.: Self-learning active noise control. J. Acoust. Soc. Am., 124 (4) (2008), 20782084.
[66]Kuo, S.M.; Luan, J.: On-line modeling and feedback compensation for multiple-channel active noise control systems. App. Signal Process., 1 (2) (1994), 6475.
[67]Kuo, S.M.: Active noise control system and method for on-line feedback path modeling, US Patents No. 6,418,227, July 9, 2002.
[68]Iwamatsu, Y.; Fujii, K.; Muneyasu, M.: Frequency domain method to estimate the coefficients of feedback control filter for active noise control systems. Acoust. Sci. Technol., 27 (5) (2006), 264269.
[69]Akhtar, M.T.; Abe, M.; Kawamata, M.: On active noise control systems with online acoustic Feedback path modeling. Trans. Audio Speech Lang. Process., 15 (2) (2007), 593600.
[70]Akhtar, M.; Tufail, M.; Abe, M.; Kawamata, M.: Acoustic feedback neutralization in active noise control systems. IEICE Electron. Express, 4 (7) (2007), 221226.
[71]Akhtar, M.; Abe, M.; Kawamata, M.; Mitsuhashi, W.: A simplified method for online acoustic feedback path modeling and neutralization in multichannel active noise control systems. Signal Process., 89 (6) (2009), 10901099.
[72]Akhtar, M.T.; Mitsuhashi, W.: Variable step-size based method for acoustic feedback modeling and neutralization in active noise control systems. Appl. Acoust., 72 (5) (2011), 297304.
[73]Eriksson, L.J.; Allie, M.C.; Greiner, R.A.: The selection and application of an IIR adaptive filter for use in active sound attenuation. IEEE Trans. Acoust. Speech Signal Process., ASSP-35 (4) (1987), 433437.
[74]Eriksson, L.J.: Development of the filtered-U algorithm for active noise control. J. Acoust. Soc. Am., 89 (1) (1991), 257265.
[75]Crawford, D.H.; Stewart, R.W.: Adaptive IIR filtered-v algorithm for active noise control. J. Acoust. Soc. Am., 101 (4) (1997), 20972103.
[76]Wang, A.K.; Ren, W.: Convergence analysis of the filtered-u algorithm for active noise control. Signal Process., 73 (3) (1999), 255266.
[77]Fraanje, R.; Verhaegen, M.; Doelman, N.: Convergence analysis of the filtered-u LMS algorithm for active noise control in case perfect cancellation is not possible. Signal Process., 83 (6) (2003), 12391254.
[78]Mosquera, C.; Gomez, J.A.; Perez, F.; Sobreira, M.: Adaptive IIR filters for active noise control. Int. J. Acoust. Vib., 6 (1) (2001), 310.
[79]Montazeri, A.; Poshtan, J.: A computationally efficient adaptive IIR solution to active noise and vibration control systems. IEEE Trans. Autom. Control, 55 (11) (2010), 26712676.
[80]Montazeri, A.; Poshtan, J.: A new adaptive recursive RLS-based fast-array IIR filter for active noise and vibration control systems. Signal Process., 91 (1) (2011), 98113.
[81]Sun, X.; Chen, D.-S.: A new infinite impulse response filter-based adaptive algorithm for active noise control. J. Sound Vib., 258 (2) (2002), 385397.
[82]Chen, S.J.; Gibson, J.S.: Feedforward adaptive noise control with multivariable gradient lattice filters. IEEE Trans. Signal Process., 49 (3) (2001), 511520.
[83]Veena, S.; Narasimhan, S.: Improved active noise control performance based on Laguerre lattice. Signal Process., 84 (4) (2004), 695707.
[84]Lu, J.; Shen, C.; Qiu, X.; Xu, B.: Lattice form adaptive infinite impulse response filtering algorithm for active noise control. J. Acoust. Soc. Am., 113 (1) (2003), 327335.
[85]Sun, X.; Meng, G.: Steiglitz-Mcbride type adaptive IIR algorithm for active noise control. J. Sound Vib., 273 (1–2) (2004), 441450.
[86]Yuan, J.: Adaptive Laguerre filters for active noise control. Appl. Acoust., 68 (1) (2007), 8696.
[87]Elliott, S.J.; Darlington, P.: Adaptive cancellation of periodic, synchronously sampled interference. IEEE Trans. Acoust. Speech Signal Process., ASSP-33 (3) (1985), 715717.
[88]Widrow, B. et al. : Adaptive noise canceling: principles and applications. Proc. IEEE, 63 (12) (1975), 16921716.
[89]Kuo, S.M.; Puvvala, A.B.: Effects of frequency separation in periodic active noise control systems. IEEE Trans. Speech Audio Process., 14 (5) (2006), 18571866.
[90]Xiao, Y.; Ma, L.; Khorasani, K.; Ikuta, A.: A new robust narrowband active noise control system in the presence of frequency mismatch. Trans. Audio Speech Lang. Process., 14 (6) (2006), 21892200.
[91]Shimada, Y.; Nishimura, Y.; Usagawa, T.; Ebata, M.: Active control for periodic noise with variable fundamental – An extended DXHS algorithm with frequency tracking ability. J. Acoust. Soc. Japan (E), 20 (4), (1999) 301312.
[92]Hinamoto, Y.; Sakai, H.: A filtered-X LMS algorithm for sinusoidal reference signals – effects of frequency mismatch. IEEE Signal Process. Lett., 14 (4) (2007), 259262.
[93]Niedzwiecki, M.; Meller, M.: A new approach to active noise and vibration control; Part I: the known frequency case. IEEE Trans. Signal Process., 57 (9) (2009), 33733386.
[94]Niedzwiecki, M.; Meller, M.: A new approach to active noise and vibration control; Part II: the unknown frequency case. IEEE Trans. Signal Process., 57 (9) (2009), 33873398.
[95]Kuo, S.M.; Puvvala, A.; Gan, W.S.: Convergence analysis of narrowband active noise control, in Proc ICASSP 2006, Toulouse, France, May 2006.
[96]Wang, L.; Gan, W.S.: Analysis of misequalization in a narrowband active noise equalizer system. J. Sound Vib., 311 (3–5) (2008), 14381446.
[97]Chen, F.K.; Chen, D.H.; Jou, Y.D.: Phasor representation for narrowband active noise control systems. EURASIP J. Audio Speech Music Process., 2008 (2008), 8pp., Article ID 126859.
[98]Xiao, Y.; Ikuta, A.; Ma, L.; Khorasani, K.: Stochastic analysis of the FXLMS-based narrowband active noise control system. Trans. Audio Speech Lang. Process., 16 (5) (2008), 10001014.
[99]Wang, L.; Gan, W.S.: Convergence analysis of narrowband active noise equalizer system under imperfect secondary path estimation. Trans. Audio Speech Lang. Process., 17 (4) (2009), 566571.
[100]Jeon, H.J.; Chang, T.G.; Kuo, S.M.: Analysis of frequency mismatch in narrowband active noise control. Trans. Audio Speech Lang. Process., 18 (6) (2010), 16321642.
[101]Xiao, Y.; Ma, L.; Hasegawa, K.: Properties of FXLMS-based narrowband active noise control with online secondary-path modeling. IEEE Trans. Signal Process., 57 (8) (2009), 29312949.
[102]Xiao, Y.: A new efficient narrowband active noise control system and its performance analysis. Trans. Audio Speech Lang. Process., 19 (7) (2011), 18651874.
[103]Jeon, H.J.; Chang, T.G.; Yu, S.; Kuo, S.M.: A narrowband active noise control system with frequency corrector. Trans. Audio Speech Lang. Process., 19 (4) (2011), 9901002.
[104]Kuo, S.M.; Kong, X.; Gan, W.S.: Analysis and applications of adaptive feedback active noise control system. IEEE Trans. Control Syst. Technol., 11 (2) (2003), 216220.
[105]Meurers, T.; Veres, S.; Elliott, S.J.: Frequency selective feedback for active noise control. IEEE Control Syst. Mag., 22 (4) (2002), 3241.
[106]Sakai, H.; Miyagi, S.: Analysis of the adaptive filter algorithm for feedback-type active noise control. Signal Process., 83 (6) (2003), 12911298.
[107]Bouchard, M.; Paillard, B.: An alternative feedback structure for the adaptive active control of periodic and time-varying periodic disturbances. J. Sound Vib., 210 (4&5) (1998), 517527.
[108]Wang, T.W.; Gan, W.S.; Kuo, S.M.: Effects of frequency separation in feedback active noise control systems, in Proc. Inter-Noise 2011, Osaka, Japan, September 2011.
[109]Ray, L.R.; Solbeck, J.A.; Streeter, A.D.; Collier, R.D.: Hybrid feedforward-feedback active noise reduction for hearing protection and communication. J. Acoust. Soc. Am., 120 (4) (2006), 20262036.
[110]Akhtar, M.; Mitsuhashi, W.: Improving performance of hybrid active noise control systems for uncorrelated narrowband disturbances. Trans. Audio Speech Lang. Process., 19 (7) (2011), 20582066.
[111]Chen, S.; Too, G.-P.: Simulations and experiments for hybrid noise control systems. Appl. Acoust., 70 (2) (2009), 247255.
[112]DeBrunner, V.; Zhou, D.: Hybrid filtered error LMS algorithm: another alternative to filtered-x LMS. IEEE Trans. Circuits Syst. I, 53 (3) (2006), 653661.
[113]George, N.V.; Panda, G.: On the development of adaptive hybrid active noise control system for effective mitigation of nonlinear noise. Signal Process., 92 (2) (2012), 509516.
[114]Song, Y.; Gong, Y.; Kuo, S.M.: A robust hybrid feedback active noise cancellation headset. IEEE Trans. Speech Audio Process., 13 (4) (2005), 607617.
[115]Xiao, Y.; Wang, J.: A new feedforward hybrid active noise control system. IEEE Signal Process. Lett., 18 (10) (2011), 591594.
[116]Elliott, S.J.; Stothers, I.M.; Nelson, P.A.: A multiple error LMS algorithm and its application to the active control of sound and vibration. IEEE Trans. Acoust. Speech Signal Process., ASSP-35 (10) (1987), 14231434.
[117]Elliott, S.J.; Boucher, C.C.; Nelson, P.A.: The behavior of a multiple channel active control system. IEEE Trans. Signal Process., 40 (5) (1992), 10411052.
[118]Douglas, S.C.: Fast implementations of the filtered-X LMS and LMS algorithms for multichannel active noise control. IEEE Trans. Speech Audio Process., 7 (7) (1999), 454465.
[119]Elliott, S.J.: Optimal controllers and adaptive controllers for multichannel feedforward control of stochastic disturbances. IEEE Trans. Signal Process., 48 (4) (2000), 1503–1060.
[120]Bouchard, M.; Norcross, S.: Computational load reduction of fast convergence algorithms for multichannel active noise control. Signal Process., 83 (1) (2003), 121134.
[121]Chen, G.; Wan, H.; Chen, K.; Muto, K.: A preprocessing method for multichannel feedforward active noise control. Acoust. Sci. Technol., 26 (3) (2005), 292295.
[122]Yuan, J.: Orthogonal adaptation for multichannel feedforward control. J. Acoust. Soc. Am., 120 (6) (2006), 37233729.
[123]Thomas, J.K.; Lovstedt, S.P.; Blotter, J.D.; Sommerfeldt, S.D.: Eigenvalue equalization filtered-x algorithm for the multichannel active noise control of stationary and nonstationary signals. J. Acoust. Soc. Am., 123 (6) (2008), 42384249.
[124]Feintuch, P.L.; Bershad, N.J.; Lo, A.K.: A frequency domain model for filtered LMS algorithms – stability analysis, design, and elimination of the training mode. IEEE Trans. Signal Process., 41 (4) (1993), 15181531.
[125]Bjarnason, E.: Analysis of the filtered-X LMS algorithm. IEEE Trans. Speech Audio Process., 3 (6) (1995), 504514.
[126]Takenouchi, Y.; Suzuki, H.; Omoto, A.: Behavior of the practically implemented filtered reference LMS algorithm in an active noise control system. Acoust. Sci. Technol., 27 (1) (2006), 2027.
[127]Tobias, O.; Bermudez, J.C.M.; Bershad, N.J.: Mean weight behavior of the filtered-X LMS algorithm. IEEE Trans. Signal Process., 48 (4) (2000), 801804.
[128]Miyagi, S.; Sakai, H.: Mean-square performance of the filtered-reference/filtered-error LMS algorithm. IEEE Trans. Circuits Syst. I, 52 (11) (2005), 24542463.
[129]Vicente, L.; Masgrau, E.: Novel FxLMS convergence condition with deterministic reference. IEEE Trans. Signal Process., 54 (10) (2006), 37683774.
[130]Paschedag, J.; Lohmann, B.: Error convergence of the filtered-X LMS algorithm for multiple harmonic excitation. Trans. Audio Speech Lang. Process., 16 (5) (2008), 989999.
[131]Hinamoto, Y.; Sakai, H.: Analysis of the filtered-X LMS algorithm and a related new algorithm for active control of multitonal noise. Trans. Audio Speech Lang. Process., 14 (1) (2006), 123130.
[132]Ardekani, I.T.; Abdulla, W.: Theoretical convergence analysis of FxLMS algorithm. Signal Process., 90 (12) (2010), 30463055.
[133]Ardekani, I.T.; Abdulla, W.: On the convergence of real-time active noise control systems. Signal Process., 91 (5) (2011), 12621274.
[134]Ardekani, I.T.; Abdulla, W.: On the stability of adaptation process in active noise control systems. J. Acoust. Soc. Am., 129 (1) (2011), 173184.
[135]Miyoshi, S.; Kajikawa, Y.: Statistical-mechanics approach to the filtered-X LMS algorithm. Electron. Lett., 47 (17) (2011), 997999.
[136]Boucher, C.C.; Elliott, S.J.; Nelson, P.A.: Effects of modeling errors in the plant model on the performance of algorithms for adaptive feedforward control. IEE Proc. F Radar Signal Process., 138 (4) (1991), 313319.
[137]Morgan, D.R.; Sanford, C.: A control theory approach to the stability and transient analysis of the filtered-X LMS adaptive notch filter. IEEE Trans. Signal Process., 40 (9) (1992), 23412346.
[138]Snyder, S.D.; Hansen, C.H.: The effect of transfer function estimation errors on the filtered-X LMS algorithm. IEEE Trans. Signal Process., 42 (4) (1994), 950953.
[139]Wu, M.; Qiu, X.; Chen, G.: The statistical behavior of phase error for deficient-order secondary path modeling. IEEE Signal Process. Lett., 15 ( 2008), 313316.
[140]Wang, J.; Chen, K.; Chen, G.; Muto, K.: An investigation on the plant modeling filter's parameters for active noise control system. IEICE Trans. Fundam., E89-A (6) (2006), 18471851.
[141]Chen, G.; Wang, H.; Chen, K.; Muto, K.: The influences of path characteristics on multichannel feedforword active noise control system. J. Sound Vib., 311 (3–5) (2008), 729736.
[142]Fraanje, R.; Verhaegen, M.; Doelman, N.: Increasing the robustness of a preconditioned filtered-X LMS algorithm. IEEE Signal Process. Lett., 11 (2) (2004), 285288.
[143]Fraanje, R.; Elliott, S.J.; Verhaegen, M.: Robustness of the filtered-X LMS algorithm; Part I: necessary conditions for convergence and the asymptotic pseudospectrum of Toeplitz matrices. IEEE Trans. Signal Process., 55 (8) (2007), 40294037.
[144]Fraanje, R.; Elliott, S.J.; Verhaegen, M.: Robustness of the filtered-X LMS algorithm; Part II: robustness enhancement by minimal regularization for norm bounded uncertainty. EE Trans. Signal Process., 55 (8) (2007), 40384047.
[145]Jacobson, C.A.; Johnson, C.R.; McCormick, D.C.; Sethares, W.A.: Stability of active noise control algorithms. IEEE Signal Process. Lett., 8 (3) (2001), 7476.
[146]Omoto, A.; Morie, D.; Fujiwara, K.: Behavior of adaptive algorithms in active noise control systems with moving noise sources. Acoust. Sci. Technol., 23 (2) (2002), 8489.
[147]Lopes, P.; Piedade, M.: The behavior of the modified FX-LMS algorithm with secondary path modeling errors. IEEE Signal Process. Lett., 11 (2) (2004), 148151.
[148]Tobias, O.; Seara, R.: Leaky delayed LMS algorithm: stochastic analysis for Gaussian data and delay modeling error. IEEE Trans. Signal Process., 52 (6) (2004), 15961606.
[149]Tobias, O.; Seara, R.: Leaky-FXLMS algorithm: stochastic analysis for Gaussian data and secondary path modeling error. IEEE Trans. Speech Audio Process., 13 (6) (2005), 12171230.
[150]Tobias, O.; Seara, R.: Mean weight behavior of the FXAFA LMS algorithm. IEEE Trans. Signal Process., 54 (2) (2006), 801804.
[151]Kuo, S.M.; Finn, B.M.: Musical interference suppression and on-line modeling techniques for multi-channel active noise control systems, in Proc. Conf. Recent Advances in Active Control of Sound and Vibration, April 1993, 969980. 1331–1335.
[152]Kuo, S.M.; Chuang, H.; Mallela, P.: Integrated hands-free cellular, active noise control and audio system, in Proc. IEEE Int. Conf. Consumer Electronics, June 1993, 270271.
[153]Kuo, S.M.; Chuang, H.; Mallela, P.: Integrated automotive signal processing and audio system. IEEE Trans. Consum. Electron., 39 (3) (1993), 522532.
[154]Chakravarthy, S.; Kuo, S.M.: Design of multi-function audio system in bedrooms, in Proc. IEEE Int. Conf. on Consumer Electronics, January, 2007, paper P4–3 in conference CD.
[155]Liu, L.C.; Kuo, S.M.; Raghuathan, K.: An audio integrated motorcycle helmet. Low Freq. Noise Vib. Active Control J., 29 (3) (2010), 161170.
[156]Gan, W.S.; Kuo, S.M.: An integrated active noise control headsets. IEEE Trans. Consum. Electron., 48 (2) (2002), 242247.
[157]Kuo, S.M.; Gan, W.S.: Hybrid adaptive feedback active noise control system, in Proc. 8th Int. Congress on Sound and Vibration, Hong Kong, 2–6 July 2001.
[158]Gan, W.S.; Kuo, S.M.: Integrated active noise control communication headsets, in Proc. 2003 Int. Symp. on Circuits and Systems, Bangkok, Thailand, May 25–28, 2003.
[159]Wang, L.; Gan, W.S.; Kuo, S.M.: Integration of bass enhancement and active noise control system in automobile cabin, in Proc. Special Issue on Active Noise Control, EURASIP J. Adv. Acoust. Vib., 2008 (2008), 9pp., Article ID 869130.
[160]Kuo, S.M.; Ji, M.J.: Development and analysis of an adaptive noise equalizer. IEEE Trans. Speech Audio Process., 3 (1995), 217222.
[161]Rees, L.; Elliott, S.J.: Adaptive algorithms for active sound-profiling. Trans. Audio Speech Lang. Process., 14 (2) (2006), 711719.
[162]Kuo, S.M.; Ji, M.J.: Principle and application of adaptive noise equalizer. IEEE Trans. Circuits Syst. II Analog Dig. Signal Process., 41 ( 1994), 471474.
[163]Kuo, S.M.; Tahernezhadi, M.; Ji, L.: Frequency-domain periodic active noise control and equalization. IEEE Trans. Speech Audio Process., 5 (4) (1997), 348358.
[164]Mallu, S.: Integration and optimization of active noise equalizer with filtered error least mean square algorithm, MS Thesis, Northern Illinois University, March 2005.
[165]Gonzalez, A.; de Diego, M.; Ferrer, M.; Pinero, G.: Multichannel active noise equalization of interior noise. Trans. Audio Speech Lang. Process., 14 (1) (2006), 110122.
[166]Kuo, S.M.; Yenduri, R.K.; Gupta, A.: Frequency-domain delayless active sound quality control algorithm. J. Sound Vib., 318 (4–5) (2008), 715724.
[167]Kuo, S.M.; Yang, Y.: Broadband adaptive noise equalizer. IEEE Signal Process. Lett., 3 (8) (1996), 234235.
[168]Yenduri, R.K.; Kuo, S.M.: Frequency-domain broadband active sound quality control algorithms, in Proc. Active 2006, September 2006.
[169]Rees, L.; Elliott, S.J.: Psychoacoustic modelling for active Sound profiling in automobiles. Proc. Inst. Acoust., 26 (pt. 2) (2004), 111.
[170]Wang, T.W.; Gan, W.S.; Chong, Y.K.: Psychoacoustic hybrid active noise control system, to appear in Proc. of ICASSP 2012, 2012.
[171]Bao, H.; Panahi, I.: A novel feedforward active noise control structure with spectrum-tuning for residual noise. IEEE Trans. Consum. Electron., 56 (4) (2010), 20932097.
[172]Bao, H.; Panahi, I.: Psychoacoustic active noise control based on delayless subband adaptive filtering, in Proc. of ICASSP 2010, 2010, 341344.
[173]Haneda, Y.: Active noise control with a virtual microphone based on common acoustical pole and residue model, In Proc. ICASSP, vol. 2, 2002, 18771880.
[174]Kestell, C.D.; Cazzolato, B.S.; Hansen, C.H.: Active noise control in a free field with virtual sensors. J. Acoust. Soc. Am., 109 (1) (2001), 232243.
[175]Bonito, G.; Elliott, S.J.; Boucher, C.C.: Generation of zones of quiet using a virtual microphone arrangement. J. Acoust. Soc. Am., 101 (6) (1997), 34983516.
[176]Cazzolato, B.: An adaptive LMS virtual microphone, in Proc. Active 2002, July 2002, 105116.
[177]Munn, J.M.; Cazzolato, B.S.; Kestell, C.D.; Hansen, C.H.: Virtual error sensing for active noise control in a one-dimensional waveguide: performance prediction versus measurement. J. Acoust. Soc. Am., 113 (1) (2003), 3538.
[178]Kuo, S.M.; Gan, W.S.; Kalluri, S.: Virtual sensor algorithms for active noise control systems, in Proc. 2003 IEEE Int. Symp. on Intelligent Signal Processing and Communication Systems, December 2003, 714719.
[179]Moreau, D.J.; Ghan, J.; Cazzolato, B.S.; Zander, A.C.: Active noise control in a pure tone diffuse sound field using virtual sensing. J. Acoust. Soc. Am., 125 (6) (2009), 37423755.
[180]Orosz, G.; Sujbert, L.; Peceli, G.: Adaptive filtering with bandwidth constraints in the feedback path. Signal Process., 92 (1) (2012), 130138.
[181]Bouchard, M.: Multichannel affine and fast affine projection algorithms for active noise control and acoustic equalization systems. IEEE Trans. Speech Audio Process., 11 (1) (2003), 5460.
[182]Albu, F.: Efficient multichannel filtered-x affine projection algorithm for active noise control. Electron. Lett., 42 (7) (2006), 421423.
[183]Ferrer, M.; Gonzalez, A.; de Diego, M.; Pinero, G.: Fast affine projection algorithms for filtered-x multichannel active noise control. Trans. Audio Speech Lang. Process., 16 (8) (2008), 13961408.
[184]Wesselink, J.M.; Berkhoff, A.P.: Fast affine projections and the regularized modified filtered-error algorithm in multichannel active noise control. J. Acoust. Soc. Am., 124 (2) (2008), 949960.
[185]Carini, A.; Sicuranza, G.L.: Optimal regularization parameter of the multichannel filtered-x affine projection algorithm. IEEE Trans. Signal Process., 55 (10) (2007), 48824895.
[186]Carini, A.; Sicuranza, G.L.: Transient and steady-state analysis of filtered-x affine projection algorithms. IEEE Trans. Signal Process., 54 (2) (2006), 665678.
[187]Carini, A.; Sicuranza, G.L.: Analysis of transient and steady-state behavior of a multichannel filtered-x partial-error affine projection algorithm. EURASIP J. Audio Speech Music Process., 2007 (2007), paper ID 031314.
[188]Ferrer, M.; Gonzalez, A.; de Diego, M.; Pinero, G.: Transient analysis of the conventional filtered-x affine projection algorithm for active noise control. Trans. Audio Speech Lang. Process., 19 (3) (2011), 652657.
[189]Bouchard, M.; Quednau, S.: Multichannel recursive-least-squares algorithms and fast-transversal-filter algorithms for active noise control and sound reproduction systems. IEEE Trans. Speech Audio Process., 8 (5) (2000), 606618.
[190]Morgan, D.; Thi, J.: A delayless sub-band adaptive filter architecture. IEEE Trans. Signal Process., 43 (8) (1995), 18191830.
[191]DeBrunner, V.; DeBrunner, L.; Wang, L.: Sub-band adaptive filtering with delay compensation for active control. IEEE Trans. Signal Process., 52 (10) (2004), 29322941.
[192]Wang, L.; Swamy, M.; Ahmad, M.: An efficient implementation of the delay compensation for sub-band filtered-x least-mean-square algorithm. IEEE Trans. Circuits Syst. II, 53 (8) (2006), 748752.
[193]Rajgopal, K.; Venkataraman, S.: A delayless adaptive IFIR filterbank structure for wideband and narrowband active noise control. Signal Process., 86 (11) (2006), 34213431.
[194]Das, D.; Panda, G.; Kuo, S.M.: New block filtered-X LMS algorithms for active noise control systems. IET Signal Process., 1 (2) (2007), 7381.
[195]Zhou, Y.; Qiu, X.: An error path delay compensated delayless subband adaptive filter architecture. Signal Process., 87 (11) (2007), 26402648.
[196]Wu, M.; Qiu, X.; Chen, G.: An overlap-save frequency-domain implementation of the delayless subband ANC algorithm. Trans. Audio Speech Lang. Process., 16 (8) (2008), 17061710.
[197]Milani, A.; Panahi, I.; Loizou, P.: A new delayless subband adaptive filtering algorithm for active noise control systems. Trans. Audio Speech Lang. Process., 17 (5) (2009), 10381045.
[198]Milani, A.; Kannan, G.; Panahi, I.; Briggs, R.: Analysis and optimal design of delayless subband active noise control systems for broadband noise. Signal Process., 90 (4) (2010), 11531164.
[199]Lan, H.; Zhang, M.; Ser, W.: A weight-constrained FxLMS algorithm for feedforward active noise control systems. IEEE Signal Process. Lett., 9 (1) (2002), 14.
[200]Akhtar, M.; Abe, M.; Kawamata, M.: Adaptive filtering with averaging-based algorithm for feedforward active noise control systems. IEEE Signal Process. Lett., 11 (6) (2004), 557560.
[201]Sun, X.; Kuo, S.M.: Active narrowband noise control systems using cascading adaptive filters. Trans. Audio Speech Lang. Process., 15 (2) (2007), 586592.
[202]Kajikawa, Y.; Hirayama, R.: Feedback active noise control system combining linear prediction filter, in Proc. EUSIPCO2010, 2010, 3135.
[203]Kuo, S.M.; Wu, H.T.; Chen, F.K.; Gunnala, M.R.: Saturation effects in active noise control systems. IEEE Trans. Circuits Syst. I, 51 (6) (2004), 11631171.
[204]Chen, F.K.; Chen, C.W.: Modeling the saturation effects for narrowband active noise control systems. IEICE Trans. Fundam., E92-A (11) (2009), 29222926.
[205]Snyder, S.D.; Tanaka, N.: Active control of vibration using a neural network. IEEE Trans. Neural Netw., 6 (7) (1995), 819828.
[206]Bouchard, M.; Paillard, B.; Le Dinh, C.T.: Improved training of neural networks for the nonlinear active control of sound and vibration. IEEE Trans. Neural Netw., 10 (3) (1999), 391401.
[207]Zhou, Y.L.; Zhang, Q.Z.; Li, X.D.; Gan, W.S.: Analysis and DSP implementation of an ANC system using a filtered-error neural network. J. Sound Vib., 285 (1–2) (2005), 125.
[208]Zhang, Q.Z.; Gan, W.S.; Zhou, Y.L.: Adaptive recurrent fuzzy neural networks for active noise control. J. Sound Vib., 296 (4–5) (2006), 935948.
[209]Chang, C.Y.; Luoh, F.B.: Enhancement of active noise control using neural-based filtered-X algorithm. J. Sound Vib., 305 (1–2) (2007), 348356.
[210]Strauch, P.; Mulgrew, B.: Active control of nonlinear noise processes in a linear duct. IEEE Trans. Signal Process., 46 (9) (1998), 24042412.
[211]Tan, L.; Jiang, J.: Adaptive Volterra filters for active control of nonlinear noise processes. IEEE Trans. Signal Process., 49 (8) (2001), 16671676.
[212]Carini, A.; Sicuranza, G.L.: Filtered-X affine projection algorithms for active noise control using Volterra filters. EURASIP J. Adv. Signal Process., 2004(12) (2004), 18411848.
[213]Sicuranza, G.L.; Carini, A.: Filtered-X affine projection algorithm for multichannel active noise control using second-order Volterra filters. IEEE Signal Process. Lett., 11 (11) (2004), 853857.
[214]Sicuranza, G.L.; Carini, A.: A multichannel hierarchical approach to adaptive Volterra filters employing filtered-X affine projection algorithms. IEEE Trans. Signal Process., 53 (4) (2005), 14631473.
[215]Russo, F.; Sicuranza, G.L.: Accuracy and performance evaluation in the genetic optimization of nonlinear systems for active noise control. IEEE Trans. Instrum. Meas., 56 (4) (2007), 14431450.
[216]Das, D.; Panda, G.: Active mitigation of nonlinear noise processes using a novel filtered-s LMS algorithm. IEEE Trans. Speech Audio Process., 12 (3) (2004), 313322.
[217]Das, D.; Mohapatra, S.; Routray, A.; Basu, T.: Filtered-s LMS algorithm for multichannel active control of nonlinear noise processes. Trans. Audio Speech Lang. Process., 14 (5) (2006), 18751880.
[218]Reddy, E.; Das, D.; Prabhu, K.: Fast adaptive algorithms for active control of nonlinear noise processes. IEEE Trans. Signal Process., 56 (9) (2008), 45304536.
[219]Reddy, E.P.; Das, D.P.; Prabhu, K.: Fast exact multichannel FSLMS algorithm for active noise control. Signal Process., 89 (5) (2009), 952956.
[220]Vikram Kumar, P.; Prabhu, K.; Das, D.: Block filtered-s least mean square algorithm for active control of non-linear noise systems. IET Signal Process., 4 (2) (2010), 168180.
[221]Zhao, H.; Zeng, X.; Zhang, J.: Adaptive reduced feedback FLNN filter for active control of nonlinear noise processes. Signal Process., 90 (3) (2010), 834847.
[222]Sicuranza, G.L.; Carini, A.: A Generalized FLANN filter for nonlinear active noise control. Trans. Audio Speech Lang. Process., 19 (8) (2011), 24122417.
[223]Zhang, X.; Ren, X.; Na, J.; Zhang, B.; Huang, H.: Adaptive nonlinear neuro-controller with an integrated evaluation algorithm for nonlinear active noise systems. J. Sound Vib., 329 (24) (2010), 50055016.
[224]Sicuranza, G.L.; Carini, A.: On the BIBO stability condition of adaptive recursive FLANN filters with application to nonlinear active noise control. Trans. Audio Speech Lang. Process., 20 (1) (2012), 234245.
[225]Kuo, S.M.; Wu, H.T.: Nonlinear adaptive bilinear filters for active noise control systems. IEEE Trans. Circuits Syst. I, 52 (3) (2005), 617624.
[226]Zhou, D.; DeBrunner, V.: Efficient adaptive nonlinear filters for nonlinear active noise control. IEEE Trans. Circuits Syst. I, 54 (3) (2007), 669681.
[227]Napoli, R.; Piroddi, L.: Nonlinear active noise control with NARX models. Trans. Audio Speech Lang. Process., 18 (2) (2010), 286295.
[228]Costa, M.; Bermudez, J.; Bershad, N.: Stochastic analysis of the filtered-X LMS algorithm in systems with nonlinear secondary paths. IEEE Trans. Signal Process., 50 (6) (2002), 13271342.
[229]Costa, M.; Bermudez, J.; Bershad, N.: The performance surface in filtered nonlinear mean-square estimation. IEEE Trans. Circuits Syst. I, 50 (3) (2003), 445447.
[230]Costa, M.H.; Ximenes, L.R.; Bermudez, J.C.M.: Statistical analysis of the LMS adaptive algorithm subjected to a symmetric dead-zone nonlinearity at the adaptive filter output. Signal Process., 88 (6) (2008), 14851495.
[231]Lower, M.C.; Hurst, D.W.; Claughton, A.R.; Thomas, A.: Sources and levels of noise under motorcyclists' helmets. Proc. Inst. Acoust., 16 (part 2) (1994), 319325.
[232]Raghunathan, K.; Kuo, S.M.; Gan, W.S.: Active noise control for motorcycle helmets, in Proc. of ICGCS 2010, 2010, 170174.
[233]Wang, T.W.; Gan, W.S.; Kuo, S.M.: Subband-based active noise equalizer for motocycle helmets, in ASIPA ASC 2010, Singapore, 14–17 December 2010.
[234]Castae-Selga, R.; Pea, R.: Active noise hybrid time-varying control for motorcycle helmets. IEEE Trans. Control Syst. Technol., 18 (3) (2010), 602612.
[235]Chakravarthy, S.; Kuo, S.M.: Application of active noise control for reducing snore, in Proc. IEEE ICASSP, May 2006, V. 305308.
[236]Chakrovorthy, S.R.: Active snore noise control systems, M.S. Thesis, Northern Illinois University, December 2005.
[237]McJury, M.; Stewart, R.W.; Crawford, D.; Toma, E.: The use of active noise control (ANC) to reduce acoustic noise generated during MRI scanning: some initial results. Magn. Reson. Imaging, 15 (3) (1997), 319322.
[238]Chen, C.K.; Chiueh, T.T.; Chen, J.H.: Active cancellation system of acoustic noise in MR imaging. IEEE Trans. Biomed. Eng., 46 (2) (1999), 186191.
[239]Chambers, J.; Akeroyd, M.A.; Summerfield, A.Q.; Palmer, A.R.: Active control of the volume acquisition noise in functional magnetic resonance imaging: method and psychoacoustical evaluation. J. Acoust. Soc. Am., 110 (6) (2001), 30413054.
[240]Chambers, J.; Bullock, D.; Kahana, Y.; Kots, A.; Palmer, A.: Developments in active noise control sound systems for magnetic resonance imaging. Appl. Acoust., 68 (3) (2007), 281295.
[241]Li, M.; Lim, T.C.; Lee, J.H.: Simulation study on active noise control for a 4-T MRI scanner. Magn. Reson. Imaging, 26 (3) (2008), 393400.
[242]Hall, D.A.; Chambers, J.; Akeroyd, M.A.; Foster, J.R.; Coxon, R.; Palmer, A.R.: Acoustic, psychophysical, and neuroimaging measurements of the effectiveness of active cancellation during auditory functional magnetic resonance imaging. J. Acoust. Soc. Am., 125 (1) (2009), 347359.
[243]Shou, X.; Chen, X.; Derakhshan, J.; Eagan, T.; Baig, T.; Shvartsman, S.; Duerk, J.; Brown, R.: The suppression of selected acoustic frequencies in MRI. Appl. Acoust., 71 (3) (2010), 191200.
[244]Reddy, R.; Panahi, I.; Briggs, R.: Hybrid FxRLS-FxNLMS adaptive algorithm for active noise control in fMRI application. IEEE Trans. Control Syst. Technol., 19 (2) (2011), 474480.
[245]Kumamoto, M.; Kida, M.; Hirayama, R.; Kajikawa, Y.; Tani, T.; Kurumi, Y.: Active noise control system for reducing MR noise. IEICE Trans. Fundam., E94-A (7) (2011), 29222926.
[246]Kannan, G.; Milani, A.A.; Panahi, I.; Briggs, R.W.: An efficient feedback active noise control algorithm based on reduced-order linear predictive modeling of fMRI acoustic noise. IEEE Trans. Biomed. Eng., 58 (12) (2011), 33033309.
[247]Sun, X.; Kuo, S.M.; Meng, G.: Adaptive algorithm for active control of impulsive noise. J. Sound Vib., 291 (1–2) (2006), 516522.
[248]Akhtar, M.T.; Mitsuhashi, W.: Improving performance of FxLMS algorithm for active noise control of impulsive noise. J. Sound Vib., 327 (3–5) (2009), 647656.
[249]Bergamasco, M.; Piroddi, L.: Active noise control of impulsive noise using online estimation of an alpha-stable model, in Proc. of CDC, 2010, 3641.
[250]Wu, L.; He, H.; Qiu, X.: An active impulsive noise control algorithm with logarithmic transformation. Trans. Audio Speech Lang. Process., 19 (4) (2011), 10411044.
[251]Akhtar, M.T.; Mitsuhashi, W.: Improving robustness of filtered-x least mean p-power algorithm for active attenuation of standard symmetric alpha stable impulsive noise. Appl. Acoust., 72 (9) (2011), 688694.
[252]Bergamasco, M.; Rossa, F.D.; Piroddi, L.: Active noise control with on-line estimation of non-Gaussian noise characteristics. J. Sound Vib., 331 (1) (2012), 2740.
[253]Yu, X.; Gujjula, S.; Kuo, S.M.: Active noise control for infant incubators, in Proc. of EMBS 2009, 2009, 25312534.
[254]Kuo, S.M.; Liu, L.; Gujjula, S.: Development and application of audio-integrated active noise control system for infant incubators. Noise Control Eng. J., 58 (2) (2010), 163175.
[255]Gan, W.S.; Tan, E.L.; Kuo, S.M.: Audio projection: directional sound and its application in immersive communication. IEEE Signal Process. Mag., 28 (1) (2011), 4357.
[256]Tanaka, N.; Tanaka, M.: Mathematically trivial control of sound using a parametric beam focusing source. J. Acoust. Soc. Am., 129 (1) (2011), 165172.
[257]Tanaka, N.; Tanaka, M.: Active noise control using a steerable parametric array loudspeaker. J. Acoust. Soc. Am., 127 (6) (2010), 35263537.
[258]Kuo, S.M.; Kuo, K.; Gan, W.S.: Active noise control: open problems and challenges. Proc. in 2011 Int. Conf. on Green Circuits and Systems, Shanghai, China, June 2010.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

APSIPA Transactions on Signal and Information Processing
  • ISSN: 2048-7703
  • EISSN: 2048-7703
  • URL: /core/journals/apsipa-transactions-on-signal-and-information-processing
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed