Skip to main content Accessibility help
×
Home

Robust adaptive beamforming with enhancing the interference suppression capability

  • Linxian Liu (a1) and Yang Li (a2)

Abstract

The steering vector mismatch causes signal self-nulling for adaptive beamforming when the training data contain the desired signal component. To prevent signal self-nulling, many beamformers use robust technology, which is usually equivalent to the diagonal loading approach. Unfortunately, the diagonal loading approach achieves better signal enhancement at the cost of losing its interference suppression capability, especially at high input signal-to-noise ratio. In this paper, a novel robust adaptive beamforming method is developed to improve the interference suppression capability. The proposed beamformer is based on the worst-case performance optimization technology with a new estimated steering vector and a special set parameter. Firstly, a subspace which is orthogonal to the interference's steering vector is obtained by using the interference-plus-noise covariance matrix; then a new steering vector which is orthogonal to each interference's steering vector is estimated; finally, the beamformer's weight is solved with the worst-case performance optimization technology with a special set parameter. Theoretical analysis of the interference suppression principle is analyzed in detail, and some simulation results are presented to evaluate the performance of the proposed beamformer.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Robust adaptive beamforming with enhancing the interference suppression capability
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Robust adaptive beamforming with enhancing the interference suppression capability
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Robust adaptive beamforming with enhancing the interference suppression capability
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Corresponding author: Linxian Liu Email: 750900806@qq.com

References

Hide All
1Wax, M.; Anu, Y.: Performance analysis of the minimum variance beamformer in the presence of steering vector errors. IEEE Trans. Signal. Process., 44 (4) (1996), 938947.10.1109/78.492546
2Liu, F.; Jian, W.; Du, R.; Bai, X.: Robust adaptive beamforming against the array pointing error, in Progress in Electromagnetics Research Symposium-fall, 2018, 27822789.10.1109/PIERS-FALL.2017.8293609
3Tseng, C.-Y.; Feldman, D.D.; Griffiths, L.J.: Steering vector estimation in uncalibrated arrays. IEEE Trans. Signal. Process., 43 (6) (1995), 13971412.10.1109/78.388853
4Weiss, A.J.; Friedlander, B.: Fading effects on antenna arrays in cellular communications. IEEE Trans. Signal. Process., 45 (5) (1997), 11091117.10.1109/78.575686
5Pedersen, K.I.; Mogensen, P.E.; Fleury, B.H.: A stochastic model of the temporal and azimuthal dispersion seen at the base station in outdoor propagation environments. IEEE Trans. Veh. Technol., 49 (2) (2000), 437447.10.1109/25.832975
6Yermeche, Z.; Grbic, N.; Claesson, I.: Beamforming for moving source speech enhancement, in Applications of Signal Processing to Audio and Acoustics, 2005. Workshop on IEEE, October 2005, 2528.
7Mestre, X.; Lagunas, M.A.: Finite sample size effect on minimum variance beamformers: optimum diagonal loading factor for large arrays. IEEE Trans. Signal. Process., 54 (1) (2006), 6982.10.1109/TSP.2005.861052
8Li, J.; Stoica, P.: Robust Adaptive Beamforming. Wiley Online Library, 2006.
9Youn, W.S.; Un, C.K.: Robust adaptive beamforming based on the eigenstructure method. IEEE Trans. Signal. Process., 42 (6) (1994), 15431547.10.1109/78.286971
10Bell, K.L.; Ephraim, Y.; Van Trees, H.L.: A bayesian approach to robust adaptive beamforming. IEEE Trans. Signal. Process., 48 (2) (2000), 386398.10.1109/78.823966
11Er, M.H.; Ng, B.: A new approach to robust beamforming in the presence of steering vector errors. IEEE Trans. Signal. Process., 42 (7) (1994), 18261829.10.1109/78.298291
12Vorobyov, S.A.; Gershman, A.B.; Luo, Z.-Q.: Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem. IEEE Trans. Signal. Process., 51 (2) (2003), 313324.10.1109/TSP.2002.806865
13Li, J.; Stoica, P.; Wang, Z.: On robust capon beamforming and diagonal loading. IEEE Trans. Signal. Process., 51 (7) (2003), 17021715.
14Yang, F.; Liao, G.; Xu, J.; Zhu, S.; Cao, Z.: Robust adaptive beamforming against large steering vector mismatch using multiple uncertainty sets. Signal. Process., 152 (2018), 320330.
15Li, Y.; Ma, H.; Yu, D.; Cheng, L.: Iterative robust capon beamforming. Signal Process, 118 (118) (2016), 211220.10.1016/j.sigpro.2015.07.004
16Li, Y.; Ma, H.; Cheng, L.: Iterative robust adaptive beamforming. EURASIP. J. Adv. Signal. Process., 2017 (1) (2017), 58.10.1186/s13634-017-0493-9
17Gu, Y.; Leshem, A.: Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation. IEEE Trans. Signal. Process., 60 (7) (2012), 38813885.
18Igambi, D.; Yang, X.; Jalal, B.: Robust adaptive beamforming based on desired signal power reduction and output power of spatial matched filter. IEEE Access., 6 (2018), 5021750228.10.1109/ACCESS.2018.2865626
19Lu, Z.; Li, Y.; Gao, M.; Zhang, Y.: Interference covariance matrix reconstruction via steering vectors estimation for robust adaptive beamforming. Electron. Lett., 49 (22) (2013), 13731374.10.1049/el.2013.2070
20Liu, J.; Wei, X.; Guan, G.; Zhang, Q.; Wan, Q.: Adaptive beamforming algorithms with robustness against steering vector mismatch of signals. IET Radar Sonar & Navigation, 11 (12) (2017), 18311838.10.1049/iet-rsn.2017.0245
21Zhang, Z.; Wei, L.; Wen, L.; Wang, A.; Shi, H.: Interference-plus-noise covariance matrix reconstruction via spatial power spectrum sampling for robust adaptive beamforming. IEEE Signal Process. Lett., 23 (1) (2015), 121125.10.1109/LSP.2015.2504954
22Ganz, M.W.; Moses, R.L.; Wilson, S.L.: Convergence of the smi and the diagonally loaded smi algorithms with weak interference. IEEE Trans. Antennas Propag., 38 (3) (1990), 394399.10.1109/8.52247
23Van Trees, H.L.: Optimum Array Processing Part IV of Detection, Estimation, and Modulation Theory. John Wiley & Sons, Inc., New York, 2002.
24Elnashar, A.; Elnoubi, S.M., El-Mikati, H.A.: Further study on robust adaptive beamforming with optimum diagonal loading. IEEE Trans. Antennas Propag., 54 (12) (2006), 36473658.10.1109/TAP.2006.886473
25Zhang, L.; Liu, W.: Robust beamforming for coherent signals based on the spatial-smoothing technique. Signal Process., 92 (11) (2012), 27472758.10.1016/j.sigpro.2012.05.008
26Chang, L.; Yeh, C.-C.: Performance of dmi and eigenspace-based beamformers. IEEE Trans. Antennas Propag., 40 (11) (1992), 13361347.10.1109/8.202711
27Nai, S.E.; Ser, W.; Yu, Z.L.; Chen, H.: Iterative robust minimum variance beamforming. IEEE Trans. Signal. Process., 59 (4) (2011), 16011611.10.1109/TSP.2010.2096222
28Zarifi, K.; Shahbazpanahi, S.; Gershman, A.B.; Luo, Z.-Q.: Robust blind multiuser detection based on the worst-case performance optimization of the mmse receiver. IEEE Trans. Signal. Process., 53 (1) (2005), 295305.10.1109/TSP.2004.838932
29Ali, A.H.; Ye, Q.; Zhuang, J.; Tan, Q.: Low-complexity variable loading for robust adaptive beamforming. Electron. Lett., 52 (5) (2016), 338340.
30Li, Y.; Hong, M.; Wenjun, C.; De, Y.: Improvement of interference covariance matrix reconstruction-based robust adaptive beamforming, in Management Information and Optoelectronic Engineering, 2016. World Scientific, 2016, 310.10.1142/9789814759298_0001
31Wang, W.; Wu, R.; Liang, J.: A novel diagonal loading method for robust adaptive beamforming. Prog. Electromagnetics Res. C, 18 (2011), 245255.10.2528/PIERC10091803

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed