## REFERENCES

[1]
IMT 2020: 5G Vision and Requirements. White Paper, May 2014.

[2]
B. Razavi : RF Microelectronics, Prentice Hall, New Jersey, 1998.

[3]
A. Abidi : Direct-conversion radio transceivers for digital communications. IEEE J. Solid-State Circuits, 30 (12) (1995), 1399–1410.

[4]
B. Razavi : Design considerations for direct-conversion receivers. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process, 44 (6) (1997), 428–435.

[5]
C.L. Liu : Impacts of *I*/*Q* imbalance on QPSK-OFDM-QAM detection. IEEE Trans. Consum. Electron., 44 (3) (1998), 984–989.

[6]
N.T. Hieu ; H.G. Ryu ; C.X. Wang ; H.H. Chen : The impact of the *I*/*Q* mismatching errors on the BER performance of OFDM communication systems, in *IEEE Int. Conf. on Communications (ICC), IEEE*, 2007, 5423–5427.

[7]
I.H. Sohn ; E.R. Jeong ; Y.H. Lee : Data-aided approach to *I*/*Q* mismatch and DC offset compensation in communication receivers. IEEE Commun. Lett., 6 (12) (2002), 547–549.

[8]
K.P. Pun ; J.E. Franca ; C. Azeredo-Leme : A digital method for the correction of *I*/*Q* phase errors in complex sub-sampling mixers, in *Southwest Symp. on Mixed-Signal Design (SSMSD), IEEE*, 2000, 171–174.

[9]
IEEE 802.11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[10]
M. Valkama ; M. Renfors ; V. Koivunen : Compensation of frequency-selective *I*/*Q* imbalances in wideband receivers: models and algorithms, in *IEEE 3rd Workshop on Signal Processing Advances in Wireless Communications (SPAWC), IEEE*, 2001, 42–45.

[11]
G. Xing ; M. Shen ; H. Liu : Frequency offset and *I*/*Q* imbalance compensation for direct-conversion receivers. IEEE Trans. Wireless Commun., 4 (2) (2005), 673–680.

[12]
J. Kim ; K. Konstantinou : Digital predistortion of wideband signals based on power amplifier model with memory. IEEE Electron. Lett., 37 (23) (2001), 1417–1418.

[13]
L. Ding
et al. : A robust digital baseband predistorter constructed using memory polynomials. IEEE Trans. Commun., 52 (1) (2004), 159–165.

[14]
H. Ku ; J.S. Kenney : Behavioral modeling of nonlinear RF power amplifiers considering memory effects. IEEE Trans. Microw. Theory Tech., 51 (12) (2003), 2495–2504.

[15]
K.J. Muhonen ; M. Kavehrad ; R. Krishnamoorthy : Look-up table techniques for adaptive digital predistortion: a development and comparison. IEEE Trans. Veh. Technol., 49 (5) (2000), 1995–2002.

[16]
R. Schreier ; G.C. Temes ; S.R. Norsworthy : Delta-sigma Data Converters: Theory, Design, and Simulation, IEEE Press, New York, 1997.

[17]
O. Oliaei : Design of continuous-time sigma-delta modulators with arbitrary feedback waveform. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process, 50 (8) (2003), 437–444.

[18]
M. Ortmanns ; F. Gerfers ; Y. Manoli : A continuous-time ΣΔ modulator with reduced sensitivity to clock jitter through SCR feedback. IEEE Trans. Circuits Syst. I, Reg. Papers, 52 (5) (2005), 875–884.

[19]
M. Ortmanns ; F. Gerfers ; Y. Manoli : Compensation of finite gain-bandwidth induced errors in continuous-time sigma-delta modulators. IEEE Trans. Circuits Syst. I, Reg. Papers, 51 (6) (2004), 1088–1099.

[20]
M. Keller ; A. Buhmann ; J. Sauerbrey ; M. Ortmanns ; Y. Manoli : A comparative study on excess-loop-delay compensation techniques for continuous-time sigma–delta modulators. IEEE Trans. Circuits Syst. I, Reg. Papers, 55 (11) (2008), 3480–3487.

[21]
S. Pavan : Systematic design centering of continuous time oversampling converters. IEEE Trans. Circuits Syst. II, Exp. Briefs, 57 (3) (2010), 158–162.

[22]
Y.S. Shu ; J.Y. Tsai ; P. Chen ; T.Y. Lo ; P.C. Chiu : A 28fJ/conv-step CT ΔΣ modulator with 78-dB DR and 18-MHz BW in 28-nm CMOS using a highly digital multibit quantizer, in *IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers (ISSCC), IEEE*, 2013, 268–269.

[23]
V. Stojanovic : Modeling, Analysis, and Design of High-speed Links. PhD dissertation, Stanford University, Palo Alto, CA, 2004.

[24]
B. Kim ; Y. Liu ; T.O. Dickson ; J.F. Bulzacchelli ; D.J. Friedman : A 10-Gb/s compact low-power serial I/O with DFE-IIR equalization in 65-nm CMOS. IEEE J. Solid-State Circuits, 44 (12) (2009), 3526–3538.

[25]
J.L. Zerbe
et al. : Equalization and clock recovery for a 2.5–10-Gb/s 2-PAM/4-PAM backplane transceiver cell. IEEE J. Solid-State Circuits, 38 (12) (2003), 2121–2130.

[26]
R.H. Walden : Analog-to-digital converter survey and analysis. IEEE J. Sel. Areas Commun., 17 (4) (1999), 539–550.

[27]
W.C. Black Jr.; D. Hodges : Time interleaved converter arrays. IEEE J. Solid-State Circuits, 15 (6) (1980), 1022–1029.

[28]
L. Kull
et al. : A 90GS/s 8b 667 mW 64× interleaved SAR ADC in 32 nm digital SOI CMOS, in *IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers (ISSCC), IEEE*, 2014, 378–379.

[29]
D.S. Jo
et al. : A 21fJ/conv-step 9 ENOB 1.6 GS/S 2× time-interleaved FATI SAR ADC with background offset and timing-skew calibration in 45 nm CMOS, in *IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers (ISSCC), IEEE*, 2015, 464–465.

[30]
D. Fu ; K.C. Dyer ; S.H. Lewis ; P.J. Hurst : A digital background calibration technique for time-interleaved analog-to-digital converters. IEEE J. Solid-State Circuits, 33 (12) (1998), 1904–1911.

[31]
S.M. Jamal ; D. Fu ; N.C.J. Chang ; P.J. Hurst ; S.H. Lewis : A 10-b 120-M sample/s time-interleaved analog-to-digital converter with digital background calibration. IEEE J. Solid-State Circuits, 37 (12) (2002), 1618–1627.

[32]
E.J. Siragusa ; I. Galton : Gain error correction technique for pipelined analogue-to-digital converters. IEEE Electron. Lett., 36 (7) (2000), 617–618.

[33]
K. Gulati ; H.S. Lee : A low-power reconfigurable analog-to-digital converter. IEEE J. Solid-State Circuits, 36 (12) (2001), 1900–1911.

[34]
C.-C. Huang ; C.-Y. Wang ; J.-T. Wu : A CMOS 6-bit 16-GS/s time-interleaved ADC using digital background calibration techniques. IEEE J. Solid-State Circuits, 46 (4) (2011), 848–858.

[35]
M. El-Chammas ; B. Murmann : A 12-GS/s 81-mW 5-bit time-interleaved flash ADC with background timing skew calibration. IEEE J. Solid-State Circuits, 46 (4) (2011), 838–847.

[36]
B. Razavi : Design considerations for interleaved ADCs. IEEE J. Solid-State Circuits, 48 (8) (2013), 1806–1817.