Skip to main content Accessibility help
×
Home

Survey on securing data storage in the cloud

  • Chun-Ting Huang (a1), Lei Huang (a2), Zhongyuan Qin (a3), Hang Yuan (a1), Lan Zhou (a4), Vijay Varadharajan (a4) and C.-C. Jay Kuo (a1)...

Abstract

Cloud Computing has become a well-known primitive nowadays; many researchers and companies are embracing this fascinating technology with feverish haste. In the meantime, security and privacy challenges are brought forward while the number of cloud storage user increases expeditiously. In this work, we conduct an in-depth survey on recent research activities of cloud storage security in association with cloud computing. After an overview of the cloud storage system and its security problem, we focus on the key security requirement triad, i.e., data integrity, data confidentiality, and availability. For each of the three security objectives, we discuss the new unique challenges faced by the cloud storage services, summarize key issues discussed in the current literature, examine, and compare the existing and emerging approaches proposed to meet those new challenges, and point out possible extensions and futuristic research opportunities. The goal of our paper is to provide a state-of-the-art knowledge to new researchers who would like to join this exciting new field.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Survey on securing data storage in the cloud
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Survey on securing data storage in the cloud
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Survey on securing data storage in the cloud
      Available formats
      ×

Copyright

The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence http://creativecommons.org/licenses/by/3.0/

Corresponding author

Corresponding author: Lei Huang Email: lei.huang@lmu.edu

References

Hide All
[1] Chantry, D.: Mapping applications to the cloud. Technical Report, January 2009.
[2] Guttman, B.; Roback, E.A.: Sp 800-12. an introduction to computer security: the NIST handbook. Technical Report, Gaithersburg, MD, USA, 1995.
[3] Mell, P.; Grance, T.: The NIST definition of cloud computing. Technical Report, July 2009.
[4] Tim Jones, M.: Anatomy of a cloud storage infrastructure. Technical Report, IBM, 2010.
[5] Zeng, W.; Zhao, Y.; Ou, K.; Song, W.: Research on cloud storage architecture and key technologies. In Proc. 2nd Int. Conf. on Interaction Sciences: Information Technology, Culture and Human, ICIS ’09, New York, NY, USA, 2009, 1044–1048, ACM.
[6] CCITT Recommendation X.800. Security architecture for open systems interconnection for CCITT applications. Technical Report, March 1991.
[7] Paul, M.; Saxena, A.: Proof of erasability for ensuring comprehensive data deletion in cloud computing. In Recent Trends in Network Security and Applications, volume 89 of Communications in Computer and Information Science, Springer–Berlin–Heidelberg, 2010, 340–348.
[8] Perito, D.; Tsudik, G.: Secure code update for embedded devices via proofs of secure erasure. In Proc. 15th European Conf. on Research in Computer Security, ESORICS’10, Berlin, Heidelberg, 2010, 643–662, Springer-Verlag.
[9] Juels, A.; Kaliski, B.S. Jr.: Pors: proofs of retrievability for large files. In Proc. 14th ACM Conf. on Computer and Communications Security, CCS ’07, New York, NY, USA, 2007, 584–597.
[10] Lillibridge, M.; Elnikety, S.; Birrell, A.; Burrows, M.; Isard, M.: A cooperative Internet backup scheme. In Proc. USENIX Annual Technical Conf., ATEC ’03, Berkeley, CA, USA, 2003, 3–3, USENIX Association.
[11] Naor, M.; Rothblum, G.: The complexity of online memory checking. Cryptology ePrint Archive, Report 2006/091, 2006.
[12] Ateniese, G. et al. : Provable data possession at untrusted stores. In Proc. 14th ACM Conf. on Computer and Communications Security, CCS ’07, New York, NY, USA, 2007, 598–609.
[13] Johnson, R.; Molnar, D.; Song, D.; Wagner, D.: Homomorphic signature schemes. In Topics in Cryptology CT-RSA 2002, volume 2271 of Lecture Notes in Computer Science, Springer Berlin/Heidelberg, 2002, 204–245.
[14] Shacham, H.; Waters, B.: Compact proofs of retrievability. In Proc. 14th Int. Conf. on Theory and Application of Cryptology and Information Security: Advances in Cryptology, ASIACRYPT ’08, Berlin, Heidelberg, 2008, 90–107, Springer-Verlag.
[15] Ateniese, G.; Di Pietro, R.; Mancini, L.V.; Tsudik, G.: Scalable and efficient provable data possession. In Proc. 4th Int. Conf. on Security and Privacy in Communication Networks, SecureComm ’08, New York, NY, USA, 2008, 9:1–9:10, ACM.
[16] Boneh, D.; Lynn, B.; Shacham, H.: Short signatures from the weil pairing. In Advances in Cryptology ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2001, 514–532.
[17] Wang, Q.; Wang, C.; Li, J.; Ren, K.; Lou, W.: Enabling public verifiability and data dynamics for storage security in cloud computing. In Proc. 14th Eur. Conf. on Research in Computer Security, ESORICS’09, Berlin, Heidelberg, 2009, 355–370, Springer-Verlag.
[18] Wang, C.; Wang, Q.; Ren, K.; Lou, W.: Ensuring data storage security in cloud computing. In 17th Int. Workshop on Quality of Service, IWQoS 2009, July 2009, 1–9.
[19] Wang, C.; Chow, S.S.M.; Wang, Q.; Ren, K.; Lou, W.: Privacy-preserving public auditing for secure cloud storage. IEEE Trans. Comput., 62 (2) (2013), 362375.
[20] Wang, C.; Ren, K.; Lou, W.; Li, J.: Toward publicly auditable secure cloud data storage services. IEEE Netw., 24 (4) (2010), 1924.
[21] Wang, C.; Wang, Q.; Ren, K.; Cao, N.; Lou, W.: Toward secure and dependable storage services in cloud computing. IEEE Trans. Serv. Comput., 5 (2) (2012), 220232.
[22] Wang, C.; Wang, Q.; Ren, K.; Lou, W.: Privacy-preserving public auditing for data storage security in cloud computing. In Proc. 29th Conf. on Information Communications, INFOCOM’10, Piscataway, NJ, USA, 2010, 525–533, IEEE Press.
[23] Wang, Q.; Wang, C.; Ren, K.; Lou, W.; Li, J.: Enabling public auditability and data dynamics for storage security in cloud computing. IEEE Trans. Parallel Distrib. Syst., 22 (5) (2011), 847859.
[24] Zhu, Y.; Wang, H.; Hu, Z.; Ahn, G.-J.; Hu, H.; Yau, S.S.: Dynamic audit services for integrity verification of outsourced storages in clouds. In Proc. 2011 ACM Symp. on Applied Computing, SAC ’11, New York, NY, USA, 2011, 1550–1557.
[25] Han, S.; Xing, J.: Ensuring data storage security through a novel third party auditor scheme in cloud computing. In 2011 IEEE Int. Conf. on Cloud Computing and Intelligence Systems (CCIS), September 2011, 264–268.
[26] Hao, Z.; Zhong, S.; Yu, N.: A privacy-preserving remote data integrity checking protocol with data dynamics and public verifiability. IEEE Trans. Knowl. Data Eng., 23 (9) (2011), 14321437.
[27] Sebé, F.; Domingo-Ferrer, J.; Martinez-Balleste, A.; Deswarte, Y.; Quisquater, J.-J.: Efficient remote data possession checking in critical information infrastructures. IEEE Trans. Knowl. Data Eng., 20 (2008), 10341038.
[28] Curtmola, R.; Khan, O.; Burns, R.: Robust remote data checking. In Proc. 4th ACM Int. Workshop on Storage Security and Survivability, StorageSS ’08, New York, NY, USA, 2008, 63–68.
[29] Dodis, Y.; Vadhan, S.; Wichs, D.: Proofs of retrievability via hardness amplification. In Proc. 6th Theory of Cryptography Conf. on Theory of Cryptography, TCC ’09, Berlin, Heidelberg, 2009, 109–127, Springer-Verlag.
[30] Bowers, K.D.; Juels, A.; Oprea, A.: Proofs of retrievability: theory and implementation. In Proc. 2009 ACM Workshop on Cloud Computing Security, CCSW ’09, New York, NY, USA, 2009, 43–54.
[31] Shacham, H.; Waters, B.: Compact proofs of retrievability. J. Cryptol., 26 (3) (2013), 442–83.
[32] Sravan Kumar, R.; Saxena, A.: Data integrity proofs in cloud storage. In 2011 3rd Int. Conf. on Communication Systems and Networks (COMSNETS), January 2011, 1–4.
[33] Ateniese, G. et al. : Remote data checking using provable data possession. ACM Trans. Inf. Syst. Secur., 14 (1) (2011), 12:112:34.
[34] Erway, C.; Küpçü, A.; Papamanthou, C.; Tamassia, R.: Dynamic provable data possession. In Proc. 16th ACM Conf. on Computer and Communications Security, CCS ’09, New York, NY, USA, 2009, 213–222.
[35] Papamanthou, C.; Tamassia, R.; Triandopoulos, N.: Authenticated hash tables. In Proc. 15th ACM Conf. on Computer and Communications Security, CCS ’08, New York, NY, USA, 2008, 437–448.
[36] Merkle, R.C.: Protocols for Public Key Cryptosystems, IEEE Computer Society Press, 1980, 122134.
[37] Zheng, Q.; Xu, S.: Fair and dynamic proofs of retrievability. In Proc. of the first ACM Conference on Data and Application Security and Privacy, CODASPY ’11, New York, NY, USA, 2011, 237248.
[38] Wang, C.; Cao, N.; Li, J.; Ren, K.; Lou, W.: Secure ranked keyword search over encrypted cloud data. In 2010 IEEE 30th Int. Conf. on Distributed Computing Systems (ICDCS), June 2010, 253–262.
[39] Kallahalla, M.; Riedel, E.; Swaminathan, R.; Wang, Q.; Fu, K.: Plutus: Scalable secure file sharing on untrusted storage. In Proc. 2nd USENIX Conf. on File and Storage Technologies, Berkeley, CA, USA, 2003, 29–42, USENIX Association.
[40] Goh, E.j.; Shacham, H.; Modadugu, N.; Boneh, D.: Sirius: Securing remote untrusted storage. In Proc. Network and Distributed Systems Security (NDSS) Symp. 2003, 2003, 131–145.
[41] Sahai, A.; Waters, B.: Fuzzy identity-based encryption. In Advances in Cryptology – EUROCRYPT 2005, 24th Annu. Int. Conf. on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22–26, volume 3494 of Lecture Notes in Computer Science, Springer, 2005, 457–473.
[42] Goyal, V.; Pandey, O.; Sahai, A.; Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In Proc. 13th ACM Conf. on Computer and Communications Security, CCS ’06, New York, NY, USA, 2006, 89–98.
[43] Bethencourt, J.; Sahai, A.; Waters, B.: Ciphertext-policy attribute-based encryption. In Proc. 2007 IEEE Symp. on Security and Privacy, SP ’07, Washington, DC, USA, 2007, 321–334.
[44] Ostrovsky, R.; Sahai, A.; Waters, B.: Attribute-based encryption with non-monotonic access structures. In Proc. 14th ACM Conf. on Computer and Communications Security, CCS ’07, New York, NY, USA, 2007, 195–203.
[45] Cheung, L.; Newport, C.: Provably secure ciphertext policy abe. In Proc. 14th ACM Conf. on Computer and Communications Security, CCS ’07, New York, NY, USA, 2007, 456465.
[46] Lewko, A.B.; Okamoto, T.; Sahai, A.; Takashima, K.; Waters, B.: Fully secure functional encryption: Attribute-based encryption and (hierarchical) inner product encryption. In Advances in Cryptology EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science, Springer, Berlin/Heidelberg, 2010, 62–91.
[47] Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In Public Key Cryptography PKC 2010, volume 6571 of Lecture Notes in Computer Science, Springer Berlin/Heidelberg, 2011, 53–70.
[48] Goyal, V.; Jain, A.; Pandey, O.; Sahai, A.: Bounded ciphertext policy attribute based encryption. In 35th Int. Colloq. Automata, Languages and Programming, 2008, volume 5126 of Lecture Notes in Computer Science, Springer, 2008, 579–591.
[49] Malek, B.; Miri, A.: Combining attribute-based and access systems. In Int. Conf. on Computational Science and Engineering, 2009. CSE ’09, volume 3, aug. 2009, 305–312.
[50] Yu, S.; Wang, C.; Ren, K.; Lou, W.: Achieving secure, scalable, and fine-grained data access control in cloud computing. In INFOCOM, 2010 Proc. IEEE, March 2010, 1–9.
[51] Zhao, F.; Nishide, T.; Sakurai, K.: Realizing fine-grained and flexible access control to outsourced data with attribute-based cryptosystems. In Proc. 7th Int. Conference on Information Security Practice and Experience, ISPEC’11, Berlin, Heidelberg, 2011, 83–97, Springer-Verlag.
[52] Sahai, A.; Seyalioglu, H.; Waters, B.: Dynamic credentials and ciphertext delegation for attribute-based encryption. In Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, Springer, 2012, 199–217.
[53] Zhang, F.; Li, Q.; Xiong, H.: Efficient revocable key-policy attribute based encryption with full security. In IEEE 8th Int. Conf. on Computational Intelligence and Security 2012, 2012, 477–481.
[54] Chase, M.: Multi-authority attribute based encryption. In 4th Theory of Cryptography Conf., volume 4392 of Lecture Notes in Computer Science, Springer, 2007, 515–534.
[55] Chase, M.; Chow, S.S.M.: Improving privacy and security in multi-authority attribute-based encryption. In Proc. 2009 ACM Conf. on Computer and Communications Security, 2009, 121–130.
[56] Lewko, A.B.; Waters, B.: Decentralizing attribute-based encryption. In Advances in Cryptology – EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer Science, Springer, 2011, 568–588.
[57] Ahn, G.-J.; Sandhu, R.: Role-based authorization constraints specification. ACM Trans. Inf. Syst. Secur., 3 (2000), 207226.
[58] Sandhu, R.S.; Coyne, E.J.; Feinstein, H.L.; Youman, C.E.: Role-based access control models. Computer, 29 (2) (1996), 3847.
[59] Narayanan, H.A.J.; Gunes, M.H.: Ensuring access control in cloud provisioned healthcare systems. In 2011 IEEE Consumer Communications and Networking Conf. (CCNC), January 2011, 247–251.
[60] Atallah, M.J.; Blanton, M.; Fazio, N.; Frikken, K.B.: Dynamic and efficient key management for access hierarchies. ACM Trans. Inf. Syst. Secur., 12 (3) (2009), 18:118:43.
[61] De Capitani di Vimercati, S.; Foresti, S.; Jajodia, S.; Paraboschi, S.; Samarati, P.: Encryption policies for regulating access to outsourced data. ACM Trans. Database Syst., 35 (2) (2010), 12:112:46.
[62] Samarati, P.; De Capitani di Vimercati, S.: Data protection in outsourcing scenarios: issues and directions. In Proc. 5th ACM Symp. on Information, Computer and Communications Security, 2010, 2010, 114.
[63] Zhu, Y.; Ahn, G.-J.; Hu, H.; Wang, H.: Cryptographic role-based security mechanisms based on role-key hierarchy. In Proc. 5th ACM Symp. on Information, Computer and Communications Security, 2010, 2010, 314–319.
[64] Zhu, Y.; Hu, H.; Ahn, G.-J.; Wang, H.; Wang, S.-B.: Provably secure role-based encryption with revocation mechanism. J. Comput. Sci. Technol., 26 (4) (2011), 697710.
[65] Zhou, L.; Varadharajan, V.; Hitchens, M.: Enforcing role-based access control for secure data storage in the cloud. Comput. J., 54 (10) (2011), 16751687.
[66] Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts and private keys. In Proc. Advances in Crypotology 13th Int. Conf. on Theory and application of cryptology and information security, ASIACRYPT’07, Berlin, Heidelberg, 2007, 200–215, Springer-Verlag.
[67] Richard Kuhn, D.; Coyne, E.J.; Weil, T.R.: Adding attributes to role-based access control. Computer, 43 (6) (2010), 7981.
[68] Hong, C.; lv, Z.; Zhang, M.; Feng, D.: A secure and efficient role-based access policy towards cryptographic cloud storage. In Proc. 12th Int. Conf. on Web-age Information Management, WAIM’11, Berlin, Heidelberg, 2011, 264–276, Springer-Verlag.
[69] Boneh, D.; Di Crescenzo, G.; Ostrovsky, R.; Persiano, G.: Public key encryption with keyword search. In Advances in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, Springer Berlin/Heidelberg, 2004, 506–522.
[70] Song, D.X.; Wagner, D.; Perrig, A.: Practical techniques for searches on encrypted data. In 2000 IEEE Symp. Security and Privacy, 2000, SP 2000, Proc., 2000, 44–55.
[71] Kamara, S.; Lauter, K.: Cryptographic cloud storage. In Financial Cryptography and Data Security, volume 6054 of Lecture Notes in Computer Science, Springer Berlin/Heidelberg, 2010, 136–149.
[72] Abdalla, M. et al. : Searchable encryption revisited: Consistency properties, relation to anonymous IBE, and extensions. J. Cryptol., 21 (3) (2008), 350391.
[73] Bellare, M.; Boldyreva, A.; O'Neill, A.: Deterministic and efficiently searchable encryption. In Proc. of the 27th Annu. Int. Cryptology Conf. on Advances in Cryptology, CRYPTO’07, Berlin, Heidelberg, 2007, 535–552, Springer-Verlag.
[74] Kamara, S.; Papamanthou, C.: Parallel and dynamic searchable symmetric encryption. In Financial Cryptography, 2013, 258274.
[75] Kamara, S.; Papamanthou, C.; Roeder, T.: Dynamic searchable symmetric encryption. In ACM Conf. on Computer and Communications Security, 2012, 965–976.
[76] Curtmola, R.; Garay, J.; Kamara, S.; Ostrovsky, R.: Searchable symmetric encryption: Improved definitions and efficient constructions. J. Comput. Secur., 19 (5) (2011), 895934.
[77] Kuzu, M.; Islam, M.S.; Kantarcioglu, M.: Efficient similarity search over encrypted data. In Proc. 2012 IEEE 28th Int. Conf. on Data Engineering, ICDE ’12, 2012, 1156–1167.
[78] Wang, C.; Cao, N.; Ren, K.; Lou, W.: Enabling secure and efficient ranked keyword search over outsourced cloud data. IEEE Trans. Parallel Distrib. Syst., 23 (8) (2012), 14671479.
[79] Boldyreva, A.; Chenette, N.; Lee, Y.; O'Neill, A.: Order-preserving symmetric encryption. In Proc. 28th Annu. Int. Conf. on Advances in Cryptology: the Theory and Applications of Cryptographic Techniques, EUROCRYPT ’09, Berlin, Heidelberg, 2009, 224–241, Springer-Verlag.
[80] Boldyreva, A.; Chenette, N.; O'Neill, A.: Order-preserving encryption revisited: Improved security analysis and alternative solutions. In Proc. 31st Annual Conf. on Advances in Cryptology, CRYPTO’11, Berlin, Heidelberg, 2011, 578–595, Springer-Verlag.
[81] Singh, A.; Srivatsa, M.; Liu, L.: Search-as-a-service: Outsourced search over outsourced storage. ACM Trans. Web, 3 (2009), 13:113:33.
[82] Singh, A.; Srivatsa, M.; Liu, L.: Efficient and secure search of enterprise file systems. In IEEE Int. Conf. on Web Services, 2007. ICWS 2007, July 2007, 18–25.
[83] Wong, W.K.; Wai-lok Cheung, D.; Kao, B.; Mamoulis, N.: Secure KNN computation on encrypted databases. In Proc. 35th SIGMOD Int. Conf. on Management of data, SIGMOD ’09, New York, NY, USA, 2009, 139–152, ACM.
[84] Popa, R.A.; Redfield, C.M.S.; Zeldovich, N.; Balakrishnan, H.: Cryptdb: processing queries on an encrypted database. Commun. ACM, 55 (9) (2012), 103111.
[85] Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In Advances in Cryptology EUROCRYPT 99, volume 1592 of Lecture Notes in Computer Science, Springer Berlin/Heidelberg, 1999, 223–238.
[86] Gentry, C.: Fully homomorphic encryption using ideal lattices. In Proc. 41st Annu. ACM Symp. on Theory of Computing, STOC ’09, New York, NY, USA, 2009, 169–178.
[87] Van Dijk, M.; Gentry, C.; Halevi, S.; Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In Advances in Cryptology EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science, Springer Berlin/Heidelberg, 2010, 24–43.
[88] Stehle, D.; Steinfeld, R.: Faster fully homomorphic encryption. In Advances in Cryptology – ASIACRYPT 2010, volume 6477 of Lecture Notes in Computer Science, Springer Berlin/Heidelberg, 2010, 377–394.
[89] Brakerski, Z.; Vaikuntanathan, V.: Fully homomorphic encryption from ring-IWE and security for key dependent messages. In Proc. 31st Annu. Conf. on Advances in Cryptology, CRYPTO’11, Berlin, Heidelberg, 2011, 505–524, Springer-Verlag.
[90] Lyubashevsky, V.; Peikert, C.; Regev, O.: On ideal lattices and learning with errors over rings. J. ACM, 60 (6) (2013), 43:143:35.
[91] Brakerski, Z.; Gentry, C.; Vaikuntanathan, V.: Fully homomorphic encryption without bootstrapping. Cryptology ePrint Archive, Report 2011/277, 2011.
[92] Coron, J.-S.; Mandal, A.; Naccache, D.; Tibouchi, M.: Fully homomorphic encryption over the integers with shorter public keys. In Proc. 31st Annu. Conf. on Advances in Cryptology, CRYPTO’11, Berlin, Heidelberg, 2011, 487–504, Springer-Verlag.
[93] Rothblum, R.: Homomorphic encryption: From private-key to public-key. In Theory of Cryptography, volume 6597 of Lecture Notes in Computer Science, Springer Berlin/Heidelberg, 2011, 219–234.
[94] Smart, N.; Vercauteren, F.: Fully homomorphic encryption with relatively small key and ciphertext sizes. In Public Key Cryptography PKC 2010, volume 6056 of Lecture Notes in Computer Science, Springer Berlin/Heidelberg, 2010, 420–443.
[95] Gentry, C.; Halevi, S.: Implementing gentry's fully-homomorphic encryption scheme. In Proc. 30th Annu. Int. Conf. on Theory and Applications of Cryptographic Techniques: Advances in Cryptology, EUROCRYPT’11, Berlin, Heidelberg, 2011, 129–148, Springer-Verlag.
[96] Yun, A.; Shi, C.; Kim, Y.: On protecting integrity and confidentiality of cryptographic file system for outsourced storage. In Proc. 2009 ACM Workshop on Cloud Computing Security, CCSW ’09, New York, NY, USA, 2009, 67–76.
[97] Lu, R.; Lin, X.; Liang, X.; Shen, X.S.: Secure Provenance: the Essential of Bread and Butter of Data Forensics in Cloud Computing, ACM, New York, 2010, 282292.
[98] Van Dijk, M.; Juels, A.: On the impossibility of cryptography alone for privacy-preserving cloud computing. In Proc. 5th USENIX Conf. on Hot Topics in Security, HotSec’10, Berkeley, CA, USA, 2010. USENIX Association, 18.
[99] Storer, M.W.; Greenan, K.; Long, D.D.E.; Miller, E.L.: Secure data deduplication. In Proc. 4th ACM Int. Workshop on Storage Security and Survivability, StorageSS ’08, New York, NY, USA, 2008, 1–10.
[100] Guan, Q.; Zhang, Z.; Fu, S.: Proactive failure management by integrated unsupervised and semi-supervised learning for dependable cloud systems. In Proc. 2011 6th Int. Conf. on Availability, Reliability and Security, ARES ’11, Washington, DC, USA, 2011, 83–90.
[101] Zhang, M.; Cai, K.; Feng, D.: Fine-grained cloud db damage examination based on bloom filters. In Proc. 11th Int. Conf. on Web-age Information Management, WAIM’10, Berlin, Heidelberg, 2010, 157–168, Springer-Verlag.
[102] Rabin, M.O.: Efficient dispersal of information for security, load balancing, and fault tolerance. J. ACM, 36 (2) (1989), 335348.
[103] won Song, C.; Park, S.; wook Kim, D.; Kang, S.: Parity cloud service: A privacy-protected personal data recovery service. In 2011 IEEE 10th Int. Conf. Trust, Security and Privacy in Computing and Communications (TrustCom), November 2011, 812817.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed