Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-d8fc5 Total loading time: 0.337 Render date: 2021-09-20T09:22:03.458Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Common Poisson Shock Models: Applications to Insurance and Credit Risk Modelling

Published online by Cambridge University Press:  17 April 2015

Filip Lindskog
Affiliation:
Risklab, Federal Institute of Technology, ETH Zentrum, CH-8092 Zurich, Tel.: +41 1 632 67 41, Tel.: +41 1 632 10 85, lindskog@math.ethz.ch
Alexander J. McNeil
Affiliation:
Department of Mathematics, Federal Institute of Technology, ETH Zentrum, CH-8092 Zurich, Tel.: +41 1 632 61 62, Tel.: +41 1 632 15 23, mcneil@math.ethz.ch
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The idea of using common Poisson shock processes to model dependent event frequencies is well known in the reliability literature. In this paper we examine these models in the context of insurance loss modelling and credit risk modelling. To do this we set up a very general common shock framework for losses of a number of different types that allows for both dependence in loss frequencies across types and dependence in loss severities. Our aims are threefold: to demonstrate that the common shock model is a very natural way of approaching the modelling of dependent losses in an insurance or risk management context; to provide a summary of some analytical results concerning the nature of the dependence implied by the common shock specification; to examine the aggregate loss distribution that results from the model and its sensitivity to the specification of the model parameters.

Type
Articles
Copyright
Copyright © ASTIN Bulletin 2003

References

Barlow, R., and Proschan, F. (1975) Statistical Theory of Reliability and Life Testing. Holt, Rine-hart & Winston, New York.Google Scholar
Credit-Suisse-Financial-Products (1997) CreditRisk+ a Credit Risk Management Framework. Technical Document, available from htpp://www.csfb.com/creditrisk.Google Scholar
Duffie, D., and Singleton, K. (1998) Simulating Correlated Defaults. Working paper, Graduate School of Business, Stanford University.Google Scholar
Embrechts, P., McNeil, A., and Straumann, D. (2001) Correlation and dependency in risk managements properties and pitfalls. In Risk Management: Value at Risk and Beyond, ed. by Dempster, M.. Cambridge university Press, Cambridge.Google Scholar
Frey, R., and Mcneil, A. (2001) Modelling dependent defaults. Preprint, ETH Zürich, available from http://www.math.ethz.ch/~frey.Google Scholar
Hogg, R., and Klugman, S. (1984) Loss Distributions. Wiley, New York.CrossRefGoogle Scholar
Jarrow, R., and Turnbull, S. (1995) Pricing Derivatives on Financial Securities Subject to Credit Risk. Journal of Finance, L(1), 8385.Google Scholar
Joe, R. (1997) Multivariate Models and Dependence Concepts. Chapman & Hall, London.CrossRefGoogle Scholar
KMV-Corporation (1997) Modelling Default Risk. Technical Document, available from http://www.kmv.com.Google Scholar
Li, D. (1999) On Default Correlation A Copula Function Approach. Working paper, RiskMetrics Group, New York.Google Scholar
Li, H., and Xu, S. (2001) Stochastic bounds and dependence properties of survival times in a mul-ticomponent shock model. Journal of Multivariate Analysis 76, 6389.CrossRefGoogle Scholar
Marshall, A., and Olkin, I. (1967) A multivariate exponential distribution. Journal of American Statistical Association 62, 3044.CrossRefGoogle Scholar
Merton, R. (1974) On the Pricing of Corporate Debt The Risk Structure of Interest Rates. Journal of Finance 29, 449470.Google Scholar
Nelsen, R.B. (1999) An Introduction to Copulas. Springer, New York.CrossRefGoogle Scholar
Panjer, H. (1981) Recursive evaluation of a family of compound distributions. ASTIN Bulletin 12, 2226.CrossRefGoogle Scholar
RiskMetrics-Group (1997) CreditMetrics – Technical Document, available from http://www.riskmetrics.com/research.Google Scholar
Rolski, T., Schmidli, H., Schmidt, V., and Teugels, J. (1998) Stochastic Processes for Insurance and Finance. Wiley, Chichester.Google Scholar
Savits, T. (1988) Some multivariate distributions derived from a non-fatal shock model. Journal of Applied Probability 25, 383390.CrossRefGoogle Scholar
Schönbucher, P., and Schubert, D. (2001) Copula-dependent default risk in intensity models. Working paper.Google Scholar
Wang, S., and Dhaene, J. (1998) Comonotonicity, correlation order and premium principles. Insurance: Mathematics and Economics 22, 235242.Google Scholar
You have Access
85
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Common Poisson Shock Models: Applications to Insurance and Credit Risk Modelling
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Common Poisson Shock Models: Applications to Insurance and Credit Risk Modelling
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Common Poisson Shock Models: Applications to Insurance and Credit Risk Modelling
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *