Hostname: page-component-7d684dbfc8-hsbzg Total loading time: 0 Render date: 2023-09-23T11:15:51.524Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Evolutionary perspectives on psychoses and autism: Does genomic imprinting contribute to phenomenological antithesis?

Published online by Cambridge University Press:  26 June 2008

Ganesan Venkatasubramanian
Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, 560029, India. venkat.nimhans@gmail.com


Crespi & Badcock (C&B) have presented a novel view that the influence of genomic imprinting causes diametrically opposite disorders: namely, psychoses and autism. I propose an extended hypothesis that while genomic imprinting is likely to have an influence on the pathogenesis of psychoses and autism, it might contribute to phenomenological antithesis between as well as within these disorders.

Open Peer Commentary
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Abdolmaleky, H. M., Cheng, K. H., Faraone, S. V., Wilcox, M., Glatt, S. J., Gao, F., Smith, C. L., Shafa, R., Aeali, B., Carnevale, J., Pan, H., Papageorgis, P., Ponte, J. F., Sivaraman, V., Tsuang, M. T. & Thiagalingam, S. (2006) Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Human Molecular Genetics 15(21):3132–45.CrossRefGoogle ScholarPubMed
Baron-Cohen, S. (2006) Two new theories of autism: Hyper-systemising and assortative mating. Archives of Disease in Childhood 91(1):25.CrossRefGoogle ScholarPubMed
DeLong, R. (2007) GABA(A) receptor alpha5 subunit as a candidate gene for autism and bipolar disorder: A proposed endophenotype with parent-of-origin and gain-of-function features, with or without oculocutaneous albinism. Autism 11(2):135–47.CrossRefGoogle ScholarPubMed
Dobzhansky, T. (1973) Nothing in biology makes sense except in the light of evolution. The American Biology Teacher 35:125–29.CrossRefGoogle Scholar
Happé, F., Ronald, A. & Plomin, R. (2006) Time to give up on a single explanation for autism. Nature Neuroscience 9(10):1218–20.CrossRefGoogle ScholarPubMed
James, I. (2003) Singular scientists. Journal of the Royal Society of Medicine 96(1):3639.CrossRefGoogle ScholarPubMed
Jirtle, R. L. & Skinner, M. K. (2007) Environmental epigenomics and disease susceptibility. Nature Reviews. Genetics 8(4):253–62.CrossRefGoogle ScholarPubMed
Kilpinen, H., Ylisaukko-Oja, T., Hennah, W., Palo, O. M., Varilo, T., Vanhala, R., Nieminen-von Wendt, T., von Wendt, L., Paunio, T., & Peltonen, L. (2008) Association of DISC1 with autism and Asperger syndrome. Molecular Psychiatry 13(2):187–96.CrossRefGoogle ScholarPubMed
Kwapil, T. R., Barrantes-Vidal, N. & Silvia, P. J. (in press) The dimensional structure of the Wisconsin Schizotypy Scales: Factor identification and construct validity. Schizophrenia Bulletin. [Advanced access online published September 3, 2007; DOI: 10.1093/schbul/sbm098].Google ScholarPubMed
Lara, D. R., Pinto, O., Akiskal, K. & Akiskal, H. S. (2006) Toward an integrative model of the spectrum of mood, behavioral and personality disorders based on fear and anger traits: I. Clinical implications. Journal of Affective Disorders 94 (1–3):6787.CrossRefGoogle ScholarPubMed
Lindenfors, P., Nunn, C. L. & Barton, R. A. (2007) Primate brain architecture and selection in relation to sex. BMC Biology 5:20.CrossRefGoogle Scholar
Luedi, P. P., Dietrich, F. S., Weidman, J. R., Bosko, J. M., Jirtle, R. L. & Hartemink, A. J. (2007) Computational and experimental identification of novel human imprinted genes. Genome Research 17:1723–30.CrossRefGoogle ScholarPubMed
Mackie, S., Millar, J. K. & Porteous, D. J. (2007) Role of DISC1 in neural development and schizophrenia. Current Opinion in Neurobiology 17(1):95102.CrossRefGoogle Scholar
Manning, J. T., Baron-Cohen, S., Wheelwright, S. & Sanders, G. (2001) The 2nd to 4th digit ratio and autism. Developmental Medicine and Child Neurology 43:160–64.CrossRefGoogle ScholarPubMed
Mouridsen, S. E., Rich, B. & Isager, T. (2008) Psychiatric disorders in adults diagnosed as children with atypical autism. A case control study. Journal of Neural Transmission 115(1):135–38.CrossRefGoogle ScholarPubMed
Nesse, R. M., Stearns, S. C. & Omenn, G. S. (2006) Medicine needs evolution. Science 311 (5764):1071.CrossRefGoogle ScholarPubMed
Nettle, D. & Clegg, H. (2006) Schizotypy, creativity and mating success in humans. Proceedings of the Royal Society of London Series B, Biological Sciences 273:611–15.CrossRefGoogle ScholarPubMed
Procopio, M., Davies, R. J. & Marriott, P. (2006) The hormonal environment in utero as a potential aetiological agent for schizophrenia. European Archives of Psychiatry and Clinical Neuroscience 256(2):7781.CrossRefGoogle Scholar
Reichenberg, A., Gross, R., Weiser, M., Bresnahan, M., Silverman, J., Harlap, S., Rabinowitz, J., Shulman, C., Malaspina, D., Lubin, G., Knobler, H. Y., Davidson, M. & Susser, E. (2006) Advancing paternal age and autism. Archives of General Psychiatry 63(9):1026–32.CrossRefGoogle ScholarPubMed
Reik, W. & Walter, J. (2001) Genomic imprinting: Parental influence on the genome. Nature Reviews. Genetics 2(1):2132.CrossRefGoogle ScholarPubMed
Riikonen, R., Makkonen, I., Vanhala, R., Turpeinen, U., Kuikka, J. & Kokki, H. (2006) Cerebrospinal fluid insulin-like growth factors IGF-1 and IGF-2 in infantile autism. Developmental Medicine and Child Neurology 48(9):751–55.CrossRefGoogle ScholarPubMed
Rzhetsky, A., Wajngurt, D., Park, N. & Zheng, T. (2007) Probing genetic overlap among complex human phenotypes. Proceedings of the National Academy of Sciences USA 104(28):11694–99.CrossRefGoogle ScholarPubMed
Sipos, A., Rasmussen, F., Harrison, G., Tynelius, P., Lewis, G., Leon, D. A. & Gunnell, D. (2004) Paternal age and schizophrenia: A population based cohort study. British Medical Journal 329 (7474):1070.CrossRefGoogle ScholarPubMed
Venkatasubramanian, G., Chittiprol, S., Neelakantachar, N., Naveen, M. N., Thirthall, J., Gangadhar, B. N. & Shetty, K. T. (2007) Insulin and insulin-like growth factor-1 abnormalities in antipsychotic-naive schizophrenia. American Journal of Psychiatry 164(10):15571660.CrossRefGoogle ScholarPubMed
Venkatasubramanian, G., Jayakumar, P. N., Gangadhar, B. N., Janakiramaiah, N., Subbakrishna, D. K. & Keshavan, M. S. (2002) Never-treated, younger onset schizophrenia patients have smaller corpus callosum. Biological Psychiatry 51:28S. (abstract).Google Scholar
Waiter, G. D., Williams, J. H. G., Murray, A. D., Gilchrist, A., Perrett, D. I. & Whiten, A. (2005) Structural white matter deficits in high-functioning individuals with autistic spectrum disorder: A voxel-based investigation. NeuroImage 24:455–61.CrossRefGoogle ScholarPubMed
Wilkins, J. F. & Haig, D. (2003) What good is genomic imprinting: The function of parent-specific gene expression. Nature Reviews. Genetics 4(5):110.CrossRefGoogle ScholarPubMed
Woodruff, P. W., McManus, I. C. & David, A. S. (1995) Meta-analysis of corpus callosum size in schizophrenia. Journal of Neurology, Neurosurgery and Psychiatry 58(4):457–61.CrossRefGoogle Scholar