Hostname: page-component-65b85459fc-86z6c Total loading time: 0 Render date: 2025-10-18T12:50:28.650Z Has data issue: false hasContentIssue false

Further explorations of the empirical and theoretical aspects of the emulation theory

Published online by Cambridge University Press:  01 June 2004

Rick Grush*
Affiliation:
Department of Philosophy, University of California, San Diego, La Jolla, CA 92093-0119 http://mind.ucsd.edu

Abstract:

The emulation theory of representation articulated in the target article is further explained and explored in this response to commentaries. Major topics include: the irrelevance of equilibrium-point and related models of motor control to the theory; clarification of the particular sense of “representation” which the emulation theory of representation is an account of; the relation between the emulation framework and Kalman filtering; and addressing the empirical data considered to be in conflict with the emulation theory. In addition, I discuss the further empirical support for the emulation theory provided by some commentators, as well as a number of suggested theoretical applications.

Information

Type
Author's Response
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adamovich, S. V., Archambault, P. S., Ghafouri, M., Levin, M. F., Poizner, H. & Feldman, A. G. (2001) Hand trajectory invariance in reaching movements involving the trunk. Experimental Brain Research 138:288303. [RB]CrossRefGoogle ScholarPubMed
Adler, B., Collewijn, H., Curio, G., Grusser, O. J., Pause, M., Schreiter, U. & Weiss, L. (1981) Sigma-movement and sigma-nystagmus: A new tool to investigate the gaze-pursuit system and visual-movement perception in man and monkey. Annals of the New York Academy of Sciences 374:284302. [TGC]10.1111/j.1749-6632.1981.tb30877.xCrossRefGoogle ScholarPubMed
Adolphs, R., Damasio, H., Tranel, D., Cooper, G. & Damasio, A. R. (2000) A role for somatosensory cortices in the visual recognition of emotion as revealed by three-dimensional lesion mapping. Journal of Neuroscience 20:2683–90. [CLR]10.1523/JNEUROSCI.20-07-02683.2000CrossRefGoogle ScholarPubMed
Alain, C., Arnott, S. R., Hevenor, S., Graham, S. & Grady, C. L. (2001) “What” and “where” in the human auditory system. Proceedings of the National Academy of Science USA 98(21):12301–306. [aRG]CrossRefGoogle Scholar
Alexander, G. E. & Crutcher, M. D. (1990) Neural representations of the target (goal) of visually guided arm movements in three motor areas of the monkey. Journal of Neurophysiology 64:164–78. [BT]10.1152/jn.1990.64.1.164CrossRefGoogle ScholarPubMed
Ariff, G., Donchin, O., Nanayakkara, T. & Shadmehr, R. (2002) A real-time state predictor in motor control: Study of saccadic eye movements during unseen reaching movements. Journal of Neuroscience 22:7721–29. [OD]10.1523/JNEUROSCI.22-17-07721.2002CrossRefGoogle ScholarPubMed
Ashe, J., Taira, M., Smyrnis, N., Pellizzer, G., Georgakopoulos, T., Lurito, J. T. & Georgopoulos, A. P. (1993) Motor cortical activity preceding a memorized movement trajectory with an orthogonal bend. Experimental Brain Research 95:118–30. [BT]CrossRefGoogle ScholarPubMed
Balasubramaniam, R. & Feldman, A. G. (2004) Guiding movements without redundancy problems. In: Coordination dynamics: Issues and trends, ed. Jirsa, V. K. & Kelso, J. A. S.. Springer. [RB]Google Scholar
Barsalou, L. W. (1999) Perceptual symbol systems. Behavioral and Brain Sciences 22(4):577609. [aRG, CLR]10.1017/S0140525X99002149CrossRefGoogle ScholarPubMed
Barsalou, L. W., Simmons, W. K., Barbey, A. K. & Wilson, C. D. (2003) Grounding conceptual knowledge in modality-specific systems. Trends in Cognitive Science 7(2):8491. [VG]10.1016/S1364-6613(02)00029-3CrossRefGoogle ScholarPubMed
Barsalou, L., Solomon, K. O. & Wu, L. (1999) Perceptual simulation in conceptual tasks. In: Cultural, typological, and psychological perspectives in cognitive linguistics, ed. Hiraga, M. K., Sinha, C. & Wilcox, S.. John Benjamins. [aRG]Google Scholar
Bartolomeo, P., Bachoud-Levi, A. C. & Denes, G. (1997) Preserved imagery for colours in a patient with cerebral achromatopsia. Cortex 33:369–78. [VG, rRG]10.1016/S0010-9452(08)70012-1CrossRefGoogle Scholar
Batista, A. P., Buneo, C. A., Snyder, L. H. & Andersen, R. A. (1999) Reach plans in eye-centered coordinates. Science 285:257–60. [OD]10.1126/science.285.5425.257CrossRefGoogle ScholarPubMed
Behrmann, M. (2000) The mind's eye mapped onto the brain's matter. Trends in Psychological Science 9(2):5054. [aRG]Google Scholar
Bell, C., Bodznick, D., Montgomery, J. & Bastian, J. (1997) The generation and subtraction of sensory expectations within cerebellum-like structures. Brain, Behavior and Evolution 50 (Suppl. 1):1731. [TGC]10.1159/000113352CrossRefGoogle ScholarPubMed
Bell, C. C., Libouban, S. & Szabo, T. (1983) Pathways of the electric organ discharge command and its corollary discharges in mormyrid fish. Journal of Comparative Neurology 216(3): 327–38. [TGC]10.1002/cne.902160309CrossRefGoogle ScholarPubMed
Bellman, R. (1964) Perturbation techniques in mathematics, physics, and engineering. Holt, Rinehart and Winston. [VGo]Google Scholar
Benson, D. F. (1994) The neurology of thinking. Oxford Press. [RIS]Google Scholar
Bernstein, N. A. (1947) On the construction of movements. Medgiz. [MLL]Google Scholar
Bernstein, N. A. (1967) The coordination and regulation of movements. Pergamon. [MLL, RB]Google Scholar
Berthoz, A. (1996) The role of inhibition in the hierarchical gating of executed and imagined movements. Brain Research. Cognitive Brain Research 3:101–13. [OD]CrossRefGoogle ScholarPubMed
Beschin, N., Basso, A. & Della Sala, S. (2000) Perceiving left and imagining right: Dissociation in neglect. Cortex 36:401–14. [VG, rRG]10.1016/S0010-9452(08)70849-9CrossRefGoogle ScholarPubMed
Bickhard, M. H. (1980) Cognition, convention, and communication. Praeger. [GS]Google Scholar
Bickhard, M. H. (1993) Representational content in humans and machines. Journal of Experimental and Theoretical Artificial Intelligence 5:285333. [GS]CrossRefGoogle Scholar
Bickhard, M. H. (2000) Motivation and emotion: An interactive process model. In: The caldron of consciousness, ed. Ellis, R. D. & Newton, N., pp. 161–78. John Benjamins. [GS]10.1075/aicr.16.12bicCrossRefGoogle Scholar
Bickhard, M. H. (2004) Process and emergence: Normative function and representation. Axiomathes 14:135–69. [GS]CrossRefGoogle Scholar
Bickhard, M. H. & Campbell, R. L. (1996) Topologies of learning and development. New Ideas in Psychology 14(2):111–56. [GS]10.1016/0732-118X(96)00015-3CrossRefGoogle Scholar
Bickhard, M. H. & Terveen, L. (1995) Foundational issues in artificial intelligence and cognitive science: Impasse and solution. Elsevier. [GS]Google Scholar
Bisiach, E. & Luzzatti, C. (1978) Unilateral neglect of representational space. Cortex 14:129–33. [rRG, BT]10.1016/S0010-9452(78)80016-1CrossRefGoogle ScholarPubMed
Blakemore, S. J., Frith, C. D. & Wolpert, D. M. (2001) The cerebellum is involved in predicting the sensory consequences of action. NeuroReport 12(9):1879–84. [TGC]10.1097/00001756-200107030-00023CrossRefGoogle ScholarPubMed
Blakemore, S. J., Goodbody, S. J. & Wolpert, D. M. (1998) Predicting the consequences of our own actions: The role of sensorimotor context estimation. The Journal of Neuroscience 18(18):7511–18. [aRG]10.1523/JNEUROSCI.18-18-07511.1998CrossRefGoogle ScholarPubMed
Blakemore, S. J., Wolpert, D. M. & Frith, C. D. (1998) Central cancellation of selfproduced tickle sensation. Nature Neuroscience 1(7):635–40. [TGC]10.1038/2870CrossRefGoogle ScholarPubMed
Blakemore, S. J., Wolpert, D. M. & Frith, C. D. (2002) Abnormalities in the awareness of action. Trends in Cognitive Sciences 6(6):237–42. [TGC]10.1016/S1364-6613(02)01907-1CrossRefGoogle ScholarPubMed
Bodznick, D., Montgomery, J. C. & Carey, M. (1999) Adaptive mechanisms in the elasmobranch hindbrain. Journal of Experimental Biology 202:1357–64. [TGC]10.1242/jeb.202.10.1357CrossRefGoogle ScholarPubMed
Borah, J., Young, L. R. & Curry, R. E. (1988) Optimal estimator model for human spatial orientation. Annals of the New York Academy of Sciences 545:5173. [DMM]10.1111/j.1749-6632.1988.tb19555.xCrossRefGoogle ScholarPubMed
Boring, E. G. (1950) History of experimental psychology. Appleton-Century- Crofts. [JSJ]Google Scholar
Botwinick, M. & Cohen, J. (1998) Rubber hands “feel” touch that eyes see. Nature 391:756. [BT]CrossRefGoogle Scholar
Brooks, R. A. (1986) A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation 2:1423. [aRG]10.1109/JRA.1986.1087032CrossRefGoogle Scholar
Brooks, R. A. (1991) Intelligence without representation. Artificial Intelligence 47:139–60. [aRG]10.1016/0004-3702(91)90053-MCrossRefGoogle Scholar
Brugger, P., Kollias, S. S., Muri, R. M., Crelier, G., Hepp-Reymond, M. C. & Regard, M. (2000) Beyond re-membering: Phantom sensations of congenitally absent limbs. Proceedings of the National Academy of Sciences USA 97:6167–72. [BT]10.1073/pnas.100510697CrossRefGoogle ScholarPubMed
Brunet, E., Sarfati, Y., Hardy-Bayle, M. C. & Decety, J. (2000) A PET investigation of the attribution of intentions with a nonverbal task. Neuroimage 11:157–66. [OD]10.1006/nimg.1999.0525CrossRefGoogle ScholarPubMed
Bryson, A. & Ho, Y-C. (1969) Applied optimal control; Optimization, estimation, and control. Blaisdell. [aRG]Google Scholar
Buneo, C. A., Jarvis, M. R., Batista, A. P. & Andersen, R. A. (2002) Direct visuomotor transformations for reaching. Nature 416:632–36. [KS]10.1038/416632aCrossRefGoogle ScholarPubMed
Calvert, G. A. (2001) Cross-modal processing in the human brain: Insights from functional neuroimaging studies. Cerebral Cortex 11:1111–23. [KS]10.1093/cercor/11.12.1110CrossRefGoogle Scholar
Calvo Garzón, F. (Submitted) Towards a general theory of antirepresentationalism. [FCG]Google Scholar
Campbell, T. G., Ericksson, G., Wallis, G., Liu, G. B. & Pettigrew, J. D. (2003) Correlated individual variation of efference copy and perceptual rivalry timing. Program No. 550.1. 2003 Abstract Viewer/Itinerary Planner. Society for Neuroscience. Online Publication. [TGC]Google Scholar
Carpenter, A. F., Georgopoulos, A. P. & Pellizzer, G. (1999) Motor cortical encoding of serial order in a context-recall task. Science 283:1752–57. [BT]10.1126/science.283.5408.1752CrossRefGoogle Scholar
Castelli, F., Frith, C., Happe, F. & Frith, U. (2002) Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes. Brain 125:1839–49. [OD]10.1093/brain/awf189CrossRefGoogle ScholarPubMed
Catalan, M. J., Honda, M., Weeks, R. A., Cohen, L. G. & Hallett, M. (1998) The functional neuroanatomy of simple and complex sequential finger movements: A PET study. Brain 121(2):253–64. [BT]10.1093/brain/121.2.253CrossRefGoogle ScholarPubMed
Charpentier, A. (1891) Analyse experimentale de quelques elements de la sensation de poids. Archives de Physiologie Normales et Pathologiques 3:122– 35. [EMH]Google Scholar
Chen, R., Cohen, L. G. & Hallett, M. (1997) Role of the ipsilateral motor cortex in voluntary movement. Canadian Journal of Neurological Science 24:284–91. [BT]CrossRefGoogle ScholarPubMed
Chen, W., Kato, T., Zhu, X. H., Ogawa, S., Tank, D. W. & Ugurbil, K. (1998) Human primary visual cortex and lateral geniculate nucleus activation during visual imagery. NeuroReport 9(16):3669–74.10.1097/00001756-199811160-00019CrossRefGoogle ScholarPubMed
Christensen, W. D. & Bickhard, M. H. (2002) The process dynamics of normative function. Monist 85(1):328. [GS]10.5840/monist20028516CrossRefGoogle Scholar
Clark, A. (1997) Being there: Putting brain, body and world together again. MIT Press. [JSJ, GS]Google Scholar
Clark, A. (2003) Natural-born cyborgs. Oxford University Press. [TD]Google Scholar
Clark, A. & Chalmers, D. (1998) The extended mind. Analysis 58(1):719. [TD, rRG]10.1093/analys/58.1.7CrossRefGoogle Scholar
Cohen, M. S., Kosslyn, S. M., Breiter, H. C., Digirolamo, G. J., Thompson, W. L., Anderson, A. K., Bookheimer, S. Y., Rosen, B. R. & Belliveau, J. W. (1996) Changes in cortical activity during mental rotation: A mapping study using functional MRI. Brain 119:89100. [BT]10.1093/brain/119.1.89CrossRefGoogle ScholarPubMed
Cohen, Y. E. & Andersen, R. A. (2002) A common reference frame for movement plans in the posterior parietal cortex. Nature Review Neuroscience 3:553–62. [rRG, KS]10.1038/nrn873CrossRefGoogle ScholarPubMed
Cooper, L. A. & Shepard, R. N. (1973) Chronometric studies of the rotation of mental images. In: Visual information processing, ed. Chase, W. G., pp. 2458. Academic Press. [TD]Google Scholar
Courchesne, E. (1997) Brainstem, cerebellar and limbic neuroanatomical abnormalities in autism. Current Opinion in Neurobiology 7:269–78. [OD]10.1016/S0959-4388(97)80016-5CrossRefGoogle ScholarPubMed
Craik, K. (1943) The nature of explanation. Cambridge University Press. [aRG]Google Scholar
Craske, B. (1977) Perception of impossible limb positions induced by tendon vibration. Science 196:7173. [MLL, NS]10.1126/science.841342CrossRefGoogle ScholarPubMed
Damasio, A. R. (1989) Time-locked multiregional retroactivation: A systems-level proposal for the neural substrates of recall and recognition. Cognition 33:2562. [CLR]10.1016/0010-0277(89)90005-XCrossRefGoogle ScholarPubMed
Damasio, A. R. (1994) Descartes’ error: Emotion, reason, and the human brain. Putnam. [FCG, aRG]Google Scholar
Danckert, J., Ferber, S., Doherty, T., Steinmetz, H., Nicolle, D. & Goodale, M. A. (2002) Selective, non-lateralized impairment of motor imagery following right parietal damage. Neurocase 8:194204. [VG]CrossRefGoogle ScholarPubMed
Dartnall, T. H. (2003) Externalism extended. In: Proceedings of the Joint Fourth International Conference on Cognitive Science and the Seventh Australasian Society for Cognitive Science Conference, University of New South Wales, Sydney, Australia. July 2003, ed. Slezak, P., pp. 9499. The University of New South Wales Press. [TD]Google Scholar
Decety, J. & Jeannerod, M. (1995) Mentally simulated movements in virtual reality. Does Fitts’ law hold in motor imagery? Behavioral Brain Research 72:127–34. [OD, aRG]10.1016/0166-4328(96)00141-6CrossRefGoogle ScholarPubMed
Decety, J., Perani, D., Jeannerod, M., Bettinardi, V., Tadary, B., Woods, R., Mazziotta, J. C. & Fazio, F. (1994) Mapping motor representations with positron emission tomography. Nature 371:600602. [BT]10.1038/371600a0CrossRefGoogle ScholarPubMed
Deiber, M.-P., Ibanez, V., Honda, M., Sadato, N., Raman, R. & Hallett, M. (1998) Cerebral processes related to visuomotor imagery and generation of simple finger movements studied with positron emission tomography. Neuroimage 7(2):7385. [aRG, TH]10.1006/nimg.1997.0314CrossRefGoogle ScholarPubMed
de Renzi, E., Motti, F. & Nichelli, P. (1980) Imitating gestures – A quantitative approach to the ideomotor apraxia. Archives of Neurology 37:610. [BT]10.1001/archneur.1980.00500500036003CrossRefGoogle Scholar
Desmurget, M. & Grafton, S. (2000) Forward modeling allows feedback control for fast reaching movements. Trends in Cognitive Sciences 4(11):423–31. [aRG]10.1016/S1364-6613(00)01537-0CrossRefGoogle ScholarPubMed
Dijkstra, T. M., Schoner, G. & Gielen, C. C. (1994) Temporal stability of the action-perception cycle for postural control in a moving visual environment. Experimental Brain Research 97:477–86. [MLL]10.1007/BF00241542CrossRefGoogle Scholar
di Pellegrino, G., Ladavas, E. & Farnè, A. (1997) Seeing where your hands are. Nature 21(388): 730. [BT]10.1038/41921CrossRefGoogle Scholar
Donald, M. (1994) Precis of the origins of modern mind: Three stages in the evolution of culture and cognition. Behavioral and Brain Sciences 16:737–91. [HW]10.1017/S0140525X00032647CrossRefGoogle Scholar
Donchin, O., Francis, J. T. & Shadmehr, R. (2003) Quantifying generalization from trial-by-trial behavior of adaptive systems that learn with basis functions: Theory and experiments in human motor control. Journal of Neuroscience 23:9032–45. [OD]10.1523/JNEUROSCI.23-27-09032.2003CrossRefGoogle ScholarPubMed
Dretske, F. I. (1988) Explaining behavior. MIT Press. [GS]10.7551/mitpress/2927.001.0001CrossRefGoogle Scholar
Droulez, J. & Cornilleau-Peres, V. (1993) Application of the coherence scheme to the multisensory fusion problem. In: Multisensory control of movement, ed. Berthoz, A., pp. 485501. Oxford University Press. [DMM]10.1093/acprof:oso/9780198547853.003.0234CrossRefGoogle Scholar
Droulez, J. & Darlot, C. (1989) The geometric and dynamic implications of the coherence constraints in three-dimensional sensorimotor interactions. In: Attention and performance, vol. XIII, ed. Jeannerod, M., pp. 495526. Erlbaum. [DMM]Google Scholar
Duhamel, J.-R., Colby, C. & Goldberg, M. E. (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255(5040):9092. [PG, arRG, MW]10.1126/science.1553535CrossRefGoogle ScholarPubMed
Eccles, J. C. (1979) Introductory remarks. In: Cerebro-cerebellar interactions, ed. Massion, J. & Sasaki, K., pp. 1018. Elsevier. [JSJ]Google Scholar
Eliasmith, C. & Anderson, C. (2003) Neural engineering: Computational, representation, and dynamics in neurobiological systems. MIT Press. [aRG]Google Scholar
Ellis, R. D. (1995) Questioning consciousness. Benjamins. [NN]10.1075/aicr.2CrossRefGoogle Scholar
Enoka, R. M. (1994) Neuromechanical basis of kinesiology. Human Kinetics. [MLL]Google Scholar
Erlhagen, W. & Schöner, G. (2002) Dynamic field theory of movement preparation. Psychological Review 109:545–72. [FCG]10.1037/0033-295X.109.3.545CrossRefGoogle ScholarPubMed
Fadiga, L., Fogassi, L., Gallese, V. & Rizzolatti, G. (2000) Visuomotor neurons: Ambiguity of the discharge or “motor” perception? International Journal of Psychophysiology 35:165–77. [RIS]10.1016/S0167-8760(99)00051-3CrossRefGoogle ScholarPubMed
Falchier, A., Clavagnier, S., Barone, P. & Kennedy, H. (2002) Anatomical evidence of multimodal integration in primate striate cortex. Journal of Neuroscience 22:5749–59. [KS]10.1523/JNEUROSCI.22-13-05749.2002CrossRefGoogle ScholarPubMed
Farah, M. J., Hammond, K. M., Levine, D. N. & Calvanio, R. (1988) Visual and spatial mental imagery: Dissociable systems of representation. Cognitive Psychology 20(4):439–62. [aRG]10.1016/0010-0285(88)90012-6CrossRefGoogle ScholarPubMed
Farah, M. J., Soso, M. J., Dasheiff, R. M. (1992) Visual angle of the mind's eye before and after unilateral occipital lobectomy. Journal of Experimental Psychology: Human Perception and Performance 18(1):241–46. [aRG]Google ScholarPubMed
Fauconnier, G. (1985) Mental spaces: Aspects of meaning construction in natural language. MIT Press. [aRG]Google Scholar
Feinberg, I. (1978) Efference copy and corollary discharge: Implications for thinking and its disorders. Schizophrenia Bulletin 4(4):636–40. [TGC]10.1093/schbul/4.4.636CrossRefGoogle ScholarPubMed
Feldman, A. G. (1986) Once more on the equilibrium-point hypothesis (l model) for motor control. Journal of Motor Behavior 18:1754. [MLL]10.1080/00222895.1986.10735369CrossRefGoogle Scholar
Feldman, A. G. & Latash, M. L. (1982) Afferent and efferent components of joint position sense: Interpretation of kinaesthetic illusions. Biological Cybernetics 42:205–14. [MLL]10.1007/BF00340077CrossRefGoogle Scholar
Feldman, A. G. & Levin, M. F. (1993) Control variables and related concepts in motor control. Concepts in Neuroscience 4:2551. [rRG]Google Scholar
Feldman, A. G. & Levin, M. F. (1995) The origin and use of positional frames of reference in motor control. Behavioral and Brain Sciences 18(4):723806. [RB, rRG, MLL]10.1017/S0140525X0004070XCrossRefGoogle Scholar
Feltz, D. L. & Landers, D. M. (1983) The effects of mental practice on motor skill learning and performance: A meta-analysis. Journal of Sport Psychology 5:2557. [NS]CrossRefGoogle Scholar
Feynman, R. P. (2001) The pleasure of finding things out, 1st edition. Penguin Books. [TGC]Google Scholar
Flanagan, J. R. & Beltzner, M. A. (2000) Independence of perceptual and sensorimotor predictions in the size-weight illusion. Nature Neuroscience 3:737–41. [EMH]10.1038/76701CrossRefGoogle ScholarPubMed
Flavell, J. H. (1999) Cognitive development: Children's knowledge about the mind. Annual Review of Psychology 50:2145. [aRG]10.1146/annurev.psych.50.1.21CrossRefGoogle ScholarPubMed
Freides, D. (1974) Human information processing and sensory modality: Crossmodal functions, information complexity and deficit. Psychological Bulletin 81:284310. [KS]10.1037/h0036331CrossRefGoogle ScholarPubMed
Freyd, J. J. & Finke, R. A. (1984) Representational momentum. Journal of Experimental Psychology: Learning, Memory, and Cognition 10:126–32. [MWi]Google Scholar
Freyd, J. J. & Jones, K. T. (1994) Representational momentum for a spiral path. Journal of Experimental Psychology: Learning, Memory, and Cognition 20:968–76. [MWi]Google ScholarPubMed
Frith, C. D., Blakemore, S. & Wolpert, D. M. (2000) Explaining the symptoms of schizophrenia: Abnormalities in the awareness of action. Brain Research. Brain Research Reviews 31:357–63. [OD]10.1016/S0165-0173(99)00052-1CrossRefGoogle ScholarPubMed
Frith, C. D. & Gallagher, S. (2002) Models of the pathological mind. Journal of Consciousness Studies 9:5780. [OD]Google Scholar
Frith, U. (2001) Mind blindness and the brain in autism. Neuron 32:969–79. [OD]10.1016/S0896-6273(01)00552-9CrossRefGoogle ScholarPubMed
Gallagher, S. & Meltzoff, A. (1996) The earliest sense of self and others: Merleau- Ponty and recent developmental studies. Philosophical Psychology 9:213–36. [VS]10.1080/09515089608573181CrossRefGoogle Scholar
Ganis, G., Keenan, J. P., Kosslyn, S. M. & Pascual-Leone, A. (2000) Transcranial magnetic stimulation of primary motor cortex affects mental rotation. Cerebral Cortex 10:175–80. [BT]10.1093/cercor/10.2.175CrossRefGoogle ScholarPubMed
Gärdenfors, P. (2003) How homo became sapiens: On the evolution of thinking. Oxford University Press. [PG]Google Scholar
Gelb, A. (1974) Applied optimal estimation. MIT Press. [aRG]Google Scholar
Georgopoulos, A. P., Lurito, J. T., Petrides, M., Schwartz, A. B. & Massey, J. T. (1989) Mental rotation of the neuronal population vector. Science 243:234–36. [BT]10.1126/science.2911737CrossRefGoogle ScholarPubMed
Gerardin, E., Sirigu, A., Lehericy, S., Poline, J. B., Gaymard, B., Marsault, C., Agid, Y. & le Bihan, D. (2000) Partially overlapping neural networks for real and imagined hand movements. Cerebral Cortex 10:1093–104. [BT]10.1093/cercor/10.11.1093CrossRefGoogle ScholarPubMed
Gerloff, C., Corwell, B., Chen, R., Hallett, M. & Cohen, L. G. (1998) The role of the human motor cortex in the control of complex and simple finger movement sequences. Brain 121:1695–709. [BT]10.1093/brain/121.9.1695CrossRefGoogle ScholarPubMed
Geyer, S., Matelli, M., Luppino, G. & Zilles, K. (2000) Functional neuroanatomy of the primate isocortical motor system. Anatomy and Embryology 202(6):443– 74. [TH]10.1007/s004290000127CrossRefGoogle ScholarPubMed
Gibson, J. J. (1966) The senses considered as perceptual systems. Houghton Mifflin. [EC]Google Scholar
Gibson, J. J. (1979/1986) The ecological approach to visual perception. Houghton Mifflin/ Erlbaum. [JSJ, RIS]Google Scholar
Glasauer, S. (1992) Interaction of semicircular canals and otoliths in the processing structure of the subjective zenith. Annals of the New York Academy of Sciences 656:847–49. [DMM]10.1111/j.1749-6632.1992.tb25272.xCrossRefGoogle ScholarPubMed
Glezer, V. D., Gauzelman, V. E. & Shcherbach, T. A. (1985) Relationship between spatial and spatial-frequency characteristics of receptive fields of cat visual cortex. Neuroscience and Behavioral Physiology 15(6):511–19. [VGo]10.1007/BF01184262CrossRefGoogle ScholarPubMed
Goldenberg, G., Mullbacher, W. & Nowak, A. (1995) Imagery without perception – a case study of anosognosia for cortical blindness. Neuropsychologia 33:1373–82. [VG, rRG]10.1016/0028-3932(95)00070-JCrossRefGoogle ScholarPubMed
Goodnow, J. J. & Levine, R. A. (1973) “The grammar of action”: Sequence and syntax in children's copying. Cognitive Psychology 4:8298. [ADS]CrossRefGoogle Scholar
Goodwin, G. M., McCloskey, D. I. & Matthews, P. B. C. (1972a) Proprioceptive illusions induced by muscle vibration: Contribution by muscle spindles to perception? Science 175:1382–84. [NS]10.1126/science.175.4028.1382CrossRefGoogle Scholar
Goodwin, G. M., McCloskey, D. I. & Matthews, P. B. C. (1972b) The contribution of muscle afferents to kinesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. Brain 95:705–48. [NS]10.1093/brain/95.4.705CrossRefGoogle Scholar
Gopnik, A. (1998) Explanation as orgasm. Minds and Machines 8:101–18. [PG]10.1023/A:1008290415597CrossRefGoogle Scholar
Gordon, R. M. (1986) Folk psychology as simulation. Mind and Language 1:158–71. [aRG]10.1111/j.1468-0017.1986.tb00324.xCrossRefGoogle Scholar
Grafton, S. T., Arbib, M. A., Fadiga, L. & Rizzolatti, G. (1996) Localization of grasp representations in humans by positron emission tomography. Experimental Brain Research 112:103–11. [BT]10.1007/BF00227183CrossRefGoogle ScholarPubMed
Grafton, S. T., Hazeltine, E. & Ivry, R. (1995) Functional mapping of sequence learning in normal humans. Journal of Cognitive Neuroscience 7:497510. [BT]10.1162/jocn.1995.7.4.497CrossRefGoogle ScholarPubMed
Grafton, S. T., Hazeltine, E. & Ivry, R. (1998) Abstract and effector-specific representations of motor sequences identified with PET. Journal of Neuroscience 18:9420–28. [BT]10.1523/JNEUROSCI.18-22-09420.1998CrossRefGoogle ScholarPubMed
Graziano, M. S. A. (1999) Where is my arm? Relative role of vision and proprioception in the neural representation of limb position. Proceedings of the National Academy of Sciences USA 96:10418–21. [BT]10.1073/pnas.96.18.10418CrossRefGoogle Scholar
Grea, H., Pisella, L., Rossetti, Y., Desmurget, M., Tilikete, C., Grafton, S., Prablanc, C. & Vighetto, A. (2002) A lesion of the posterior parietal cortex disrupts on-line adjustments during aiming movements. Neuropsychologia 40(13):2471–80. [VG]10.1016/S0028-3932(02)00009-XCrossRefGoogle ScholarPubMed
Grossi, D., Angelini, R., Pecchinenda, A. & Pizzamiglio, L. (1993) Left imaginal neglect in heminattention: Experimental study with the o’clock test. Behavioural Neurology 6:155–58. [rRG, BT]10.1155/1993/586357CrossRefGoogle ScholarPubMed
Grush, R. (1995) Emulation and cognition. Doctoral Dissertation, Department of Cognitive Science and Philosophy, University of California, San Diego. UMI. [arRG, EMH]Google Scholar
Grush, R. (1997) The architecture of representation. Philosophical Psychology 10(1):525. [rRG]10.1080/09515089708573201CrossRefGoogle Scholar
Grush, R. (1998) Wahrnehmung, Vorstellung und die sensomotorische Schleife. (English translation: Perception, imagery, and the sensorimotor loop) In: Bewußtsein und Repräsentation, ed. Esken, F. & Heckmann, H.-D.. Verlag Ferdinand Schöningh. [PG]Google Scholar
Grush, R. (2000) Self, world and space: The meaning and mechanisms of ego- and allocentric spatial representation. Brain and Mind 1(1):5992. [rRG]10.1023/A:1010039705798CrossRefGoogle Scholar
Grush, R. (2001) The semantic challenge to computational neuroscience. In: Theory and method in the neurosciences, ed. Machamer, P., Grush, R. & McLaughlin, P.. University of Pittsburgh Press. [rRG]Google Scholar
Grush, R. (2003) In defense of some “Cartesian” assumptions concerning the brain and its operation. Biology and Philosophy 18(1):5393. [rRG]10.1023/A:1023344808741CrossRefGoogle Scholar
Grusser, O. J. (1995) On the history of the ideas of efference copy and reafference. Clio Medica 33:3555. [TGC]Google ScholarPubMed
Guérin, F., Ska, B. & Belleville, S. (1999) Cognitive processing of drawing abilities. Brain and Cognition 40:464–78. [ADS]10.1006/brcg.1999.1079CrossRefGoogle ScholarPubMed
Haarmeier, T., Thier, P., Repnow, M. & Petersen, D. (1997) False perception of motion in a patient who cannot compensate for eye movements. Nature 389(6653):849–52. [TGC]10.1038/39872CrossRefGoogle Scholar
Haken, H., Kelso, J. A. S. & Bunz, H. (1985) A theoretical model of phase transitions in human hand movements. Biological Cybernetics 51:347–56. [CBW]10.1007/BF00336922CrossRefGoogle ScholarPubMed
Hanakawa, T., Honda, M., Okada, T., Fukuyama, H. & Shibasaki, H. (2003a) Differential activity in the premotor cortex subdivisions in humans during mental calculation and verbal rehearsal tasks: A functional magnetic resonance imaging study. Neuroscience Letters 347(3):199201. [TH]10.1016/S0304-3940(03)00692-XCrossRefGoogle Scholar
Hanakawa, T., Honda, M., Okada, T., Fukuyama, H. & Shibasaki, H. (2003b) Neural correlates underlying mental calculation in abacus experts: A functional magnetic resonance imaging study. Neuroimage 19(2, Pt. 1):296307. [TH]10.1016/S1053-8119(03)00050-8CrossRefGoogle Scholar
Hanakawa, T., Honda, M., Sawamoto, N., Okada, T., Yonekura, Y., Fukuyama, H. & Shibasaki, H. (2002) The role of rostral Brodmann area 6 in mentaloperation tasks: An integrative neuroimaging approach. Cerebral Cortex 12(11):1157–70. [TH]10.1093/cercor/12.11.1157CrossRefGoogle ScholarPubMed
Hanakawa, T., Immisch, I., Toma, K., Dimyan, M. A., van Gelderen, P. & Hallett, M. (2003c) Functional properties of brain areas associated with motor execution and imagery. Journal of Neurophysiology 89(2):9891002. [OD, TH]10.1152/jn.00132.2002CrossRefGoogle Scholar
Haykin, S. (2001) Kalman filtering and neural networks. Wiley. [PG, aRG]10.1002/0471221546CrossRefGoogle Scholar
Hein, A. & Held, R. (1961) A neural model for labile sensorimotor coordinations. Biological Prototypes and Synthetic Systems 1:7174. [DMM]Google Scholar
Heisenberg, M. & Wolf, R. (1988) Reafferent control of optomotor yaw torque in Drosophila melongaster. Journal of Comparative Physiology A163:373–88. [BW]10.1007/BF00604013CrossRefGoogle Scholar
Held, R. (1961) Exposure history as a factor in maintaining stability of perception and coordination. Journal of Nervous and Mental Disease 132:2632. [DMM]10.1097/00005053-196101000-00005CrossRefGoogle ScholarPubMed
Henriques, D. Y., Klier, E. M., Smith, M. A., Lowy, D. & Crawford, J. D. (1998) Gaze-centered remapping of remembered visual space in an open-loop pointing task. Journal of Neuroscience 18:1583–94. [OD]10.1523/JNEUROSCI.18-04-01583.1998CrossRefGoogle Scholar
Hershberger, W. (1976) Afference copy, the closed-loop analogue of von Holst's efference copy Cybernetics Forum 8:97102. [JSJ]Google Scholar
Holmes, G. (1917) The symptoms of acute cerebellar injuries due to gunshot injuries. Brain 40:461535. [EMH]10.1093/brain/40.4.461CrossRefGoogle Scholar
Holmes, G. (1922) The Croonian lectures on the clinical symptoms of cerebellar disease and their interpretation. Lancet 2:111–15. [EMH]Google Scholar
Hommel, B., Muesseler, J., Aschersleben, G. & Prinz, W. (2001) The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences 24:849–78. [RIS]10.1017/S0140525X01000103CrossRefGoogle ScholarPubMed
Honda, M., Wise, S. P., Weeks, R. A., Deiber, M. P. & Hallett, M. (1998) Cortical areas with enhanced activation during object centred spatial information processing: A PET study. Brain 121:2145–58. [BT]10.1093/brain/121.11.2145CrossRefGoogle ScholarPubMed
Houk, J. C., Singh, S. P., Fischer, C. & Barto, A. (1990) An adaptive sensorimotor network inspired by the anatomy and physiology of the cerebellum. In: Neural networks for control, ed. Miller, W. T., Sutton, R. S. & Werbos, P. J.. MIT Press. [aRG]Google Scholar
Hubbard, E. M., Altschuler, E. L., Gregory, R. L., Whip, E., Heard, P. & Ramachandran, V. S. (2000) Psychophysics and neuropsychology of the sizeweight illusion. Society for Neuroscience Abstracts 26 (No.167): 4. [EMH]Google Scholar
Hubbard, E. M., Altschuler, E. L. & Ramachandran, V. S. (in preparation) Size matters: Relative contribution of size vs. shape to the size-weight illusion. [EMH]Google Scholar
Hubbard, T. L. (1996) Representational momentum, centripetal force, and curvilinear impetus. Journal of Experimental Psychology: Learning, Memory, and Cognition 22:1049–60. [MWi]Google ScholarPubMed
Hubbard, T. L. & Bharucha, J. J. (1988) Judged displacement in apparent vertical and horizontal motion. Perception and Psychophysics 44:211–21. [MWi]10.3758/BF03206290CrossRefGoogle ScholarPubMed
Humphrey, N. K. (1993) A history of the mind. Vintage Books. [PG]Google Scholar
Hurley, S. (forthcoming a) Active perception and perceiving action: The shared circuits hypothesis. In: Perceptual experience, ed. Gendler, T. & Hawthorne, J.. Oxford University Press. [rRG]Google Scholar
Hurley, S. (forthcoming b) The shared circuits hypothesis: A unified functional architecture for control, imitation, and simulation. In: Perspectives on Imitation: From mirror neurons to memes, ed. Hurley, S. & Chater, N.. MIT Press. [rRG]Google Scholar
Imamizu, H., Miyauchi, S., Tamada, T., Sasaki, Y., Takino, R., Putz, B., Yoshioke, T. & Kawato, M. (2000) Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403:192–95. [aRG]10.1038/35003194CrossRefGoogle ScholarPubMed
Ito, M. (1970) Neurophysiological aspects of the cerebellar motor control system. International Journal of Neurology 7:162–76. [arRG]Google ScholarPubMed
Ito, M. (1984) The cerebellum and neural control. Raven Press. [arRG]Google Scholar
Ito, M. (1993) Movement and thought: Identical control mechanisms by the cerebellum. Trends in Neural Science 16:448–50. [OD]10.1016/0166-2236(93)90073-UCrossRefGoogle ScholarPubMed
Jeannerod, M. (1994) The representing brain: Neural correlates of motor intention and imagery. Behavioral and Brain Sciences 17(2):187245. [aRG, NS]10.1017/S0140525X00034026CrossRefGoogle Scholar
Jeannerod, M. (1995) Mental imagery in the motor context. Neuropsychologia 33:1419–32. [aRG]10.1016/0028-3932(95)00073-CCrossRefGoogle ScholarPubMed
Jeannerod, M. (2001) Neural simulation of action: A unifying mechanism for motor cognition. Neuroimage 14:103109. [aRG]10.1006/nimg.2001.0832CrossRefGoogle Scholar
Jeannerod, M. & Frak, V. (1999) Mental imaging of motor activity in humans. Current Opinion in Neurobiology 9:735–39. [aRG]10.1016/S0959-4388(99)00038-0CrossRefGoogle ScholarPubMed
Johnson, M. (1987) The body in the mind. University of Chicago Press. [aRG]10.7208/chicago/9780226177847.001.0001CrossRefGoogle Scholar
Johnson, S. H. (2000a) Imagining the impossible: Intact motor representations in hemiplegics. Neuroreport 11:729–32. [aRG]10.1097/00001756-200003200-00015CrossRefGoogle Scholar
Johnson, S. H. (2000b) Thinking ahead: The case for motor imagery in prospective judgements of prehension. Cognition 74(2000):3370. [aRG]10.1016/S0010-0277(99)00063-3CrossRefGoogle Scholar
Johnson, S. H., Rotte, M., Grafton, S. T., Hinrichs, H., Gazzaniga, M. S. & Heinze, H. J. (2002) Selective activation of a parietofrontal circuit during implicitly imagined prehension. Neuroimage 17:1693–704. [OD]10.1006/nimg.2002.1265CrossRefGoogle ScholarPubMed
Johnson-Laird, P. N. (1983) Mental models. Harvard University Press/Cambridge University Press. [aRG, NN]Google Scholar
Johnson-Laird, P. N. (2001) Mental models and deduction. Trends in Cognitive Sciences 5(10):434– 42. [aRG, HW]10.1016/S1364-6613(00)01751-4CrossRefGoogle ScholarPubMed
Jordan, J. S. (1998) Recasting Dewey's critique of the reflex-arc concept via a theory of anticipatory consciousness: Implications for theories of perception. New Ideas in Psychology 16(3):165–87. [JSJ]10.1016/S0732-118X(98)00009-9CrossRefGoogle Scholar
Jordan, J. S. (2000) The role of “control” in an embodied cognition. Philosophical Psychology 13:233–37. [JSJ]10.1080/09515080050075717CrossRefGoogle Scholar
Jordan, J. S. (2003) The embodiment of intentionality In: Dynamical systems approaches to embodied cognition, ed. Tschacher, W., pp. 201–27. Springer Verlag. [JSJ]10.1142/9789812564399_0010CrossRefGoogle Scholar
Jordan, M. I., Rumelhart, D. E. (1992) Forward models: Supervised learning with a distal teacher. Cognitive Science 16:307–54. [EMH]10.1207/s15516709cog1603_1CrossRefGoogle Scholar
Kalman, R. E. (1960) A new approach to linear filtering and prediction problems. Journal of Basic Engineering 82(D):3545. [aRG]10.1115/1.3662552CrossRefGoogle Scholar
Kalman, R. & Bucy, R. S. (1961) New results in linear filtering and prediction theory. Journal of Basic Engineering 83(D):95108. [aRG, VGo]10.1115/1.3658902CrossRefGoogle Scholar
Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R. & Ungerleider, L. G. (1995) Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 14:155–58. [BT]Google Scholar
Karni, A., Meyer, G., Rey-Hipolito, C., Jezzard, P., Adams, M. M., Turner, R. & Ungerleider, L. G. (1998) The acquisition of skilled motor performance: Fast and slow experience-driven changes in primary motor cortex. Proceedings of the National Academy of Sciences USA 95:861–68. [BT]10.1073/pnas.95.3.861CrossRefGoogle ScholarPubMed
Karniel, A. (2002) Three creatures named “forward model.” Neural Networks 15:305307. [BW]10.1016/S0893-6080(02)00020-5CrossRefGoogle ScholarPubMed
Kawato, M. (1989) Adaptation and learning in control of voluntary movement by the central nervous system. Advanced Robotics 3(3):229–49. [rRG]10.1163/156855389X00127CrossRefGoogle Scholar
Kawato, M. (1990) Computational schemes and neural network models for formation and control of multijoint arm trajectories. In: Neural networks for control, ed. Miller, W. T., Sutton, R. S. & Werbos, P. J.. MIT Press. [rRG, EMH]Google Scholar
Kawato, M. (1997) Bidirectional theory approach to consciousness. In: Cognition, computation and consciousness, ed. Ito, M., Miyashita, Y. & Rolls, E. T.. Oxford University Press. [OD]Google Scholar
Kawato, M. (1999) Internal models for motor control and trajectory planning. Current Opinion in Neurobiology 9:718–27. [aRG]10.1016/S0959-4388(99)00028-8CrossRefGoogle ScholarPubMed
Kawato, M., Furukawa, K. & Suzuki, R. (1987) A hierarchical neural network model for control and learning of voluntary movement. Biological Cybernetics 57:169–85. [aRG, JSJ]10.1007/BF00364149CrossRefGoogle ScholarPubMed
Kosslyn, S. M. (1994) Image and brain. MIT Press. [aRG]10.7551/mitpress/3653.001.0001CrossRefGoogle Scholar
Kosslyn, S. M., Alpert, N. M., Thompson, W. L., Maljkovic, V., Weise, S. B., Chabris, C. F., Hamilton, S. E., Rauch, S. L. & Buonanno, F. S. (1993) Visualmental imagery activates topographically-organized visual cortex: PET investigations. Journal of Cognitive Neuroscience 5:263–87. [aRG, BT]10.1162/jocn.1993.5.3.263CrossRefGoogle Scholar
Kosslyn, S. M., Ball, T. M. & Reiser, B. J. (1978) Visual imagers preserve metric spatial transformation: Evidence from studies of images scanning. Journal of Experimental Psychology: Human Perception and Performance 4:4760. [rRG, BT]Google Scholar
Kosslyn, S. M. & Sussman, A. L. (1995) Roles of imagery in perception: Or, there is no such thing as immaculate perception. In: The cognitive neurosciences, ed. Gazzaniga, M. S., pp. 1035–42. MIT Press. [arRG, OW]Google Scholar
Kosslyn, S. M., Thompson, W. L., Kim, I. J. & Alpert, N. M. (1995) Topographical representations of mental images in primary visual cortex. Nature 378:496–98. [aRG]10.1038/378496a0CrossRefGoogle ScholarPubMed
Kosslyn, S. M., Thompson, W. L., Wraga, M. J. & Alpert, N. M. (2001) Imagining rotation by endogenous versus exogenous forces: Distinct neural mechanisms. NeuroReport 12:2519–25. [ADS, BT]10.1097/00001756-200108080-00046CrossRefGoogle ScholarPubMed
Krakauer, J. W., Ghilardi, M.-F. & Ghez, C. (1999) Independent learning of internal models for kinematic and dynamic control of reaching. Nature Neuroscience 2(11):1026–31. [aRG]10.1038/14826CrossRefGoogle ScholarPubMed
Kuo, A. (1995) An optimal control model for analyzing human postural balance. IEEE Transactions on Biomedical Engineering 42(1):87101. [DMM]10.1109/10.362914CrossRefGoogle ScholarPubMed
Lakatos, I. (1970) Falsification and the methodology of scientific research programmes. In: Criticism and the growth of knowledge, ed. Lakatos, I. & Musgrave, A., pp. 91195. Cambridge University Press. [EC]10.1017/CBO9781139171434.009CrossRefGoogle Scholar
Lakoff, G. (1987) Women, fire and dangerous things: What categories reveal about the mind. The University of Chicago Press. [aRG, NN]10.7208/chicago/9780226471013.001.0001CrossRefGoogle Scholar
Lakoff, G. & Johnson, M. (1999) Philosophy in the flesh. Basic Books. [aRG]Google Scholar
Lamm, C., Windischberger, C., Leodolter, U., Moser, E. & Bauer, H. (2001) Evidence for premotor cortex activity during dynamic visuospatial imagery from single-trial functional magnetic resonance imaging and event-related slow cortical potentials. Neuroimage 14:268–83. [aRG]10.1006/nimg.2001.0850CrossRefGoogle ScholarPubMed
Lang, W., Cheyne, D., Hollinger, P., Gerschkager, W. & Lindinger, G. (1996) Electric and magnetic fields of the brain accompanying internal simulation of movement. Brain Research 3:125–29. [BT]Google ScholarPubMed
Langacker, R. W. (1987) Foundations of cognitive grammar, vol. I. Stanford University Press. [aRG]Google Scholar
Langacker, R. W. (1990) Concept, image and symbol: The cognitive basis of grammar. Mouton de Gruyter. [aRG]Google Scholar
Langacker, R. W. (1991) Foundations of cognitive grammar, vol. II. Stanford University Press. [aRG]Google Scholar
Langacker, R. W. (1999a) Grammar and conceptualization. Mouton de Gruyter. [aRG]10.1515/9783110800524CrossRefGoogle Scholar
Langacker, R. W. (1999b) Viewing in cognition and Grammar. In: Grammar and conceptualization. (Cognitive Linguistics Research 14.) Mouton de Gruyter. [rRG]10.1515/9783110800524CrossRefGoogle Scholar
Lashley, K. S. (1951) The problem of serial order in behavior. In: Cerebral mechanisms in behavior, ed. Jeffress, L. A.. Wiley. [MLL]Google Scholar
Latash, M. L. (1993) Control of human movement. Human Kinetics. [MLL]Google Scholar
Lewontin, R. C. (2001) The triple helix: Gene, organism, and environment. Harvard University Press. [HW]Google Scholar
Liepmann, H. (1905) Die Linke Hemisphaere und das Handlen. Muenchener Medizinische Wochenschrift 48:2322–26, 49:2375–78. [BT]Google Scholar
Llinas, R. & Pare, D. (1991) On dreaming and wakefulness. Neuroscience 44(3):521–35. [aRG]10.1016/0306-4522(91)90075-YCrossRefGoogle ScholarPubMed
Lotze, M., Montoya, P., Erb, M., Hulsmann, E., Flor, H., Klose, U., Birbaumer, N. & Grodd, W. (1999) Activation of cortical and cerebellar motor areas during executed and imagined hand movements: An fMRI study. Journal of Cognitive Neuroscience 11:491501. [BT]10.1162/089892999563553CrossRefGoogle ScholarPubMed
Luenberger, D. (1971) An introduction to observers. IEEE Transactions on Automatic Control 36(5):456–60. [DMM]Google Scholar
Luria, A. R. (1973) The working brain: An introduction to neuropsychology. Penguin. [OW]Google Scholar
Mach, E. (1896) Contributions to the analysis of sensations. Open Court. [aRG]Google Scholar
Mahoney, M. J. & Avener, M. (1987) Psychology of the elite athlete. An explorative study. Cognitive Therapy and Research 1:135–41. [NS]10.1007/BF01173634CrossRefGoogle Scholar
Maravita, A., Spence, C. & Driver, J. (2003) Multisensory integration and the body schema: Close to hand and within reach. Current Biology 13:(R)531–39. [BT]10.1016/S0960-9822(03)00449-4CrossRefGoogle ScholarPubMed
Marr, D. (1982) Vision. Freeman. [PG]Google Scholar
Mataric, M. (1992) Integration of representation into goal-driven behavior-based robots. IEEE Transactions on Robotics and Automation 8(3):304–12. [LAS, GS]10.1109/70.143349CrossRefGoogle Scholar
Matthews, P. B. C. (1959) The dependence of tension upon extension in the stretch reflex of the soleus of the decerebrate cat. Journal of Physiology 47:521–46. [MLL]10.1113/jphysiol.1959.sp006260CrossRefGoogle Scholar
Mehta, B. & Schaal, S. (2002) Forward models in visuomotor control. Journal of Neurophysiology 88(2):942–53. [aRG, MLL]10.1152/jn.2002.88.2.942CrossRefGoogle ScholarPubMed
Mel, B. W. (1986) A connectionist learning model for 3-d mental rotation, zoom, and pan. In: Proceedings of the Eighth Annual Conference of the Cognitive Science Society, pp. 562–71. Erlbaum. [aRG]Google Scholar
Mel, B. W. (1988) MURPHY: A robot that learns by doing. In: Neural information processing systems, ed. Anderson, D. Z.. American Institute of Physics. [aRG]Google Scholar
Mel, B. W. (1991) A connectionist model may shed light on neural mechanisms for visually guided reaching. Journal of Cognitive Neuroscience 3(3):273–92. [OW]10.1162/jocn.1991.3.3.273CrossRefGoogle ScholarPubMed
Meltzoff, A. N. & Moore, K. M. (1977) Imitation of facial and manual gestures by human neonates. Science 198:7578. [VS]10.1126/science.198.4312.75CrossRefGoogle ScholarPubMed
Merfeld, D. M. (1995a) Modeling human vestibular responses during eccentric rotation and off vertical axis rotation. Acta Oto-Laryngologica (Supplement) 520:354–59. [DMM]10.3109/00016489509125269CrossRefGoogle Scholar
Merfeld, D. M. (1995b) Modeling the vestibulo-ocular reflex of the squirrel monkey during eccentric rotation and roll tilt. Experimental Brain Research 106:123–34. [DMM]Google Scholar
Merfeld, D. M., Young, L., Oman, C. & Shelhamer, M. (1993) A multi-dimensional model of the effect of gravity on the spatial orientation of the monkey. Journal of Vestibular Research 3:141–61. [DMM]10.3233/VES-1993-3204CrossRefGoogle Scholar
Merfeld, D. M. & Zupan, L. H. (2002) Neural processing of gravitoinertial cues in humans. III. Modeling tilt and translation responses. Journal of Neurophysiology 87(2):819–33. [DMM]10.1152/jn.00485.2001CrossRefGoogle ScholarPubMed
Merfeld, D. M., Zupan, L. H. & Peterka, R. (1999) Humans use internal models to estimate gravity and linear acceleration. Nature 398:615–18. [DMM]10.1038/19303CrossRefGoogle ScholarPubMed
Miall, R. C. (1998) The cerebellum, predictive control and motor coordination. Sensory Guidance of Movement, Novartis Foundation Symposium 218:272–90. [EMH]Google ScholarPubMed
Miall, R. C. & Wolpert, D. M. (1996) Forward models for physiological motor control. Neural Networks 9(8):1265–79. [TGC]10.1016/S0893-6080(96)00035-4CrossRefGoogle Scholar
Miles, C. F. & Rogers, D. (1993) A biologically motivated associative memory architecture. International Journal of Neural Systems 4(2):109–27. [aRG]10.1142/S0129065793000110CrossRefGoogle ScholarPubMed
Millikan, R. G. (1984) Language, thought, and other biological categories. MIT Press. [GS]10.7551/mitpress/4124.001.0001CrossRefGoogle Scholar
Millikan, R. G. (1993) White Queen psychology and other essays for Alice. MIT Press. [GS]CrossRefGoogle Scholar
Milner, A. D. & Goodale, M. A. (1996) Visual brain in action. Oxford University Press. [VG]Google Scholar
Mohl, B. (1989) Short-term learning during flight control in Locusta migratoria. Journal of Comparative Physiology A163:803–12. [BW]Google Scholar
Nair, D. G., Purcott, K. L., Fuchs, A., Steinberg, F. & Kelso, J. A. (2003) Cortical and cerebellar activity of the human brain during imagined and executed unimanual and bimanual action sequences: A functional MRI study. Brain Research. Cognitive Brain Research 15:250–60. [OD]10.1016/S0926-6410(02)00197-0CrossRefGoogle ScholarPubMed
Naito, E., Ehrsson, H. H., Geyer, S., Zilles, K. & Roland, P. E. (1999) Illusory arm movements activate cortical motor areas: A PET study. Journal of Neuroscience 19:6134–44. [NS]10.1523/JNEUROSCI.19-14-06134.1999CrossRefGoogle Scholar
Naito, E., Kochiyama, T., Kitada, R., Nakamura, S., Matsumura, M., Yonekura, Y. & Sadato, N. (2002) Internally simulated movement sensations during motor imagery activate cortical motor areas and the cerebellum. Journal of Neuroscience 22:3683–91. [aRG, NS]10.1523/JNEUROSCI.22-09-03683.2002CrossRefGoogle ScholarPubMed
Newton, N. (1996) Foundations of understanding. John Benjamins. [NN] Niedenthal, P. M., Barsalou, L. W., Winkielman, P., Krauth-Gruber, S. & Ric, F. (in press) Embodiment in attitudes, social perception, and emotion. Personality and Social Psychology Review. [CLR]10.1075/aicr.10CrossRefGoogle Scholar
Niedenthal, P. M., Brauer, M., Halberstadt, J. B. & Innes-Ker, A. H. (2001) When did her smile drop? Facial mimicry and the influences of emotional state on the detection of change in emotional expression. Cognition and Emotion 15:853–64. [CLR]10.1080/02699930143000194CrossRefGoogle Scholar
Nolfi, S. & Tani, J. (1999) Extracting regularities in space and time through a cascade of prediction networks: The case of a mobile robot navigating in a structured environment. Connection Science 11(2):129–52. [aRG]10.1080/095400999116313CrossRefGoogle Scholar
Oman, C. (1982) A heuristic mathematical model for the dynamics of sensory conflict and motion sickness. Acta Oto-Laryngologica (Suppl.) 392:144. [DMM]Google ScholarPubMed
Oman, C. (1990) Motion sickness: A synthesis and evaluation of the sensory conflict theory. Canadian Journal of Physiology and Pharmacology 68(2):294303. [DMM]10.1139/y90-044CrossRefGoogle ScholarPubMed
Oman, C. (1991) Sensory conflict in motion sickness: An observer theory approach. In: Pictorial communication in virtual and real environments, ed. Ellis, S., pp. 362–76. Taylor & Francis. [DMM]Google Scholar
O’Regan, K. & Noë, A. (2001) A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences 24(5):939–73. [GS]10.1017/S0140525X01000115CrossRefGoogle ScholarPubMed
O’Reilly, R. & Munakata, Y. (2000) Computational explorations in cognitive neuroscience: Understanding the mind by simulating the brain. MIT Press. [FCG]10.7551/mitpress/2014.001.0001CrossRefGoogle Scholar
Ostry, D. J. & Feldman, A. G. (2003) A critical evaluation of the force control hypothesis in motor control. Experimental Brain Research 153:275–88. [RB, MLL]10.1007/s00221-003-1624-0CrossRefGoogle ScholarPubMed
Palmer, S. (1978) Fundamental aspects of cognitive representation. In: Cognition and categorization, ed. Rosch, E. & Lloyd, B. B.. Erlbaum. [HW]Google Scholar
Parsons, L. M. & Fox, P. T. (1998) The neural basis of implicit movements used in recognizing hand shape. Cognitive Neuropsychology 15:583615. [BT]Google Scholar
Pavani, F., Spence, C. & Driver, J. (2000) Visual capture of touch: Out-of-the-body experiences with rubber gloves. Psychological Science 11:353–59. [BT]10.1111/1467-9280.00270CrossRefGoogle ScholarPubMed
Pellizzer, G., Sargent, P. & Georgopoulos, A. P. (1995) Motor cortical activity in a context-recall task. Science 269:702705. [BT]10.1126/science.7624802CrossRefGoogle Scholar
Piaget, J. (1947) La psychologie de l’intelligence. Armand Colin. [OW]10.4324/9780203278895CrossRefGoogle Scholar
Pisella, L., Grea, H., Tilikete, C., Vighetto, A., Desmurget, M., Rode, G., Boisson, D. & Rossetti, Y. (2000) An “automatic pilot” for the hand in human posterior parietal cortex: Toward reinterpreting optic ataxia. Nature Neuroscience 3(7):729–36. [VG]CrossRefGoogle Scholar
Poeck, K. (1964) Phantoms following amputation in early childhood and in congenital absence of limbs. Cortex 1:269–75. [VS]10.1016/S0010-9452(64)80002-2CrossRefGoogle Scholar
Poeck, K. & Orgass, B. (1971) The concept of the body schema: A critical review and some experimental results. Cortex 7(3):254–77. [VS]10.1016/S0010-9452(71)80005-9CrossRefGoogle ScholarPubMed
Porro, C. A., Francescato, M. P., Cettolo, V., Diamond, M. E., Baraldi, P., Zuiani, C., Bazzocchi, M. & di Prampero, P. E. (1996) Primary motor and sensory cortex activation during motor performance and motor imagery: A functional magnetic resonance imaging study. Journal of Neuroscience 16:7688–98. [BT]10.1523/JNEUROSCI.16-23-07688.1996CrossRefGoogle ScholarPubMed
Poulet, J. F. A. & Hedwig, B. (2002) A corollary discharge maintains auditory sensitivity during sound production. Nature 418:872–76. [BW]10.1038/nature00919CrossRefGoogle ScholarPubMed
Povinelli, D. J. (2000) Folk physics for apes. Oxford University Press. [PG]Google Scholar
Powers, W. T. (1973) Behavior: The control of perception. Aldine. [JSJ]Google Scholar
Pylyshyn, Z. W. (2001) Visual indexes, preconceptual objects, and situated vision. Cognition 80(12):127–58. [aRG]10.1016/S0010-0277(00)00156-6CrossRefGoogle ScholarPubMed
Quaia, C., Lefevre, P. & Optican, L. M. (1999) Model of the control of saccades by superior colliculus and cerebellum. Journal of Neurophysiology 82(2):9991018. [TGC]10.1152/jn.1999.82.2.999CrossRefGoogle ScholarPubMed
Rao, R. P. N. & Ballard, D. H. (1999) Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience 2(1):7987. [aRG, VG]10.1038/4580CrossRefGoogle ScholarPubMed
Reason, J. (1977) Learning to cope with atypical force environments. In: Adult learning, ed. Howe, M., pp. 203–22. Wiley. [DMM]Google Scholar
Reason, J. (1978) Motion sickness adaptation: A neural mismatch model. Journal of the Royal Society of Medicine 71:819–29. [DMM]10.1177/014107687807101109CrossRefGoogle ScholarPubMed
Reed, C. (2002a) Chronometric comparisons of imagery to action: Visualizing versus physically performing springboard dives. Memory and Cognition 30(8):1169–78. [OD, CLR]10.3758/BF03213400CrossRefGoogle Scholar
Reed, C. (2002b) What is the body schema? In: The imitative mind, ed. Meltzoff, A. & Prinz, W., pp. 233–46. Cambridge University Press. [VS]10.1017/CBO9780511489969.014CrossRefGoogle Scholar
Reed, C. L. & O’Brien, C. F. (1996) Motor imagery deficit in patients with Parkinson's Disease. Paper presented at the 3rd meeting of the Cognitive Neuroscience Society, San Francisco, 1996. [CLR]Google Scholar
Reisberg, D. & Chambers, D. (1991) Neither pictures nor propositions: What can we learn from a mental image? Canadian Journal of Psychology 45:366–52. [MWi]10.1037/h0084297CrossRefGoogle ScholarPubMed
Reisberg, D., Smith, J. D., Baxter, D. A. & Sonenshine, M. (1989) “Enacted” auditory images are ambiguous; “Pure” auditory images are not. Quarterly Journal of Experimental Psychology: Human Experimental Psychology 41A:619–41. [MWi]10.1080/14640748908402385CrossRefGoogle Scholar
Richter, W., Somorjai, R., Summers, R., Jarmasz, M., Menon, R. S., Gati, J. S., Georgopoulos, A. P., Tegeler, C., Ugurbil, K. & Kim, S. G. (2000) Motor area activity during mental rotation studied by time-resolved single-trial fMRI. Journal of Cognitive Neuroscience 12(2):310–20. [aRG, BT]10.1162/089892900562129CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fadiga, L., Fogassi, L. & Gallese, V. (1999) Resonance behaviors and mirror neurons. Archives Italiennes de Biologie 137(23):85100. [TGC]Google ScholarPubMed
Roland, P. E., Skinhoj, E., Lassen, N. A. & Larsen, B. (1980) Different cortical areas in man in organization of voluntary movements in extrapersonal space. Journal of Neurophysiology 43:137–50. [BT]10.1152/jn.1980.43.1.137CrossRefGoogle ScholarPubMed
Ross, H. E. (1966) Sensory information necessary for the size-weight illusion. Nature 212:650. [EMH]10.1038/212650a0CrossRefGoogle ScholarPubMed
Ross, H. E. & Gregory, R. L. (1970) Weight illusions and weight discrimination: A revised hypothesis. Quarterly Journal of Experimental Psychology 22:318–28. [EMH]10.1080/00335557043000267CrossRefGoogle ScholarPubMed
Rozin, P. (1976) The evolution of intelligence and access to the cognitive unconscious. In: Progress in psychobiology and physiological psychology, vol.6, ed. Sprague, J. M. & Epstein, A. N., pp. 245–80. Academic Press. [OW]Google Scholar
Rumelhart, D. E. & Norman, D. A. (1988) Representation in memory. In: Stevens’ handbook of experimental psychology, ed. Atkinson, R. C., Herrnstein, R. J., Lindzey, G. & Luce, R. D.. Wiley. [HW]Google Scholar
Rumiati, R. I., Tomasino, B., Vorano, L., Umiltà, C. & de Luca, G. (2001) Selective deficit of imagining finger configurations. Cortex 37:730–33. [BT]10.1016/S0010-9452(08)70626-9CrossRefGoogle ScholarPubMed
Ryle, G. (1949) The concept of mind. Barnes and Noble. [NN]Google Scholar
Sadato, N., Campbell, G., Ibanez, V., Deiber, M. & Hallett, M. (1996) Complexity affects regional cerebral blood flow change during sequential finger movements. Journal of Neuroscience 16(8):2691–700. [TH]10.1523/JNEUROSCI.16-08-02691.1996CrossRefGoogle ScholarPubMed
Sathian, K., Prather, S. C. & Zhang, M. (2004) Visual cortical involvement in normal tactile perception. In: The handbook of multisensory processes, ed. Calvert, G., Spence, C. & Stein, B., pp. 703709. MIT Press. [KS]CrossRefGoogle Scholar
Scholz, J. P., Schöner, G. & Latash, M. L. (2000) Identifying the control structure of multi-joint coordination during pistol shooting. Experimental Brain Research 135:382404. [RB]10.1007/s002210000540CrossRefGoogle Scholar
Schroeder, C. E. & Foxe, J. J. (2002) The timing and laminar profile of converging inputs to multisensory areas of the macaque neocortex. Cognitive Brain Research 14:187–98. [KS]10.1016/S0926-6410(02)00073-3CrossRefGoogle ScholarPubMed
Schubotz, R. I. & von Cramon, D. Y. (2001) Functional organization of the lateral premotor cortex: fMRI reveals different regions activated by anticipation of object properties, location and speed. Cognitive Brain Research 11:97112. [RIS]10.1016/S0926-6410(00)00069-0CrossRefGoogle ScholarPubMed
Schubotz, R. I. & von Cramon, D. Y. (2002) Predicting perceptual events activates corresponding motor schemes in lateral premotor cortex: An fMRI study. Neuroimage 15:787–96. [RIS]10.1006/nimg.2001.1043CrossRefGoogle ScholarPubMed
Schubotz, R. I. & von Cramon, D. Y. (2003) Functional-anatomical concepts of human premotor cortex: Evidence from fMRI and PET studies. NeuroImage 20:S120S131. (Special Issue). [RIS]10.1016/j.neuroimage.2003.09.014CrossRefGoogle ScholarPubMed
Schubotz, R. I., von Cramon, D. Y. & Lohmann, G. (2003) Auditory what, where, and when: A sensory somatotopy in lateral premotor cortex. Neuroimage 20:173–85. [RIS]10.1016/S1053-8119(03)00218-0CrossRefGoogle Scholar
Schwartz, D. L. (1999) Physical imagery: Kinematic versus dynamic models. Cognitive Psychology 38:433–64. [aRG]10.1006/cogp.1998.0702CrossRefGoogle ScholarPubMed
Schwoebel, J., Boronat, C. B. & Coslett, H. B. (2002) The man who executed “imagined” movements: Evidence for dissociable components of the body schema. Brain and Cognition 50:116. [VG]10.1016/S0278-2626(02)00005-2CrossRefGoogle ScholarPubMed
Servos, P., Matin, L. & Goodale, M. A. (1995) Dissociation between two modes of spatial processing by a visual form agnosic. NeuroReport 6:1893–96. [VG, rRG]10.1097/00001756-199510020-00017CrossRefGoogle ScholarPubMed
Servos, P., Osu, R., Santi, A. & Kawato, M. (2002) The neural substrates of biological motion perception: An fMRI study. Cerebral Cortex 12:772–82. [OD]10.1093/cercor/12.7.772CrossRefGoogle ScholarPubMed
Shadmehr, R. & Wise, S. P. (2003) Motor learning and memory for reaching and pointing. In: The new cognitive neurosciences, 3rd edition, ed. Gazzaniga, M. S.. MIT Press. [OD]Google Scholar
Shepard, R. N. & Metzler, J. (1971) Mental rotation of three-dimensional objects. Science 171:701703. [TD]10.1126/science.171.3972.701CrossRefGoogle ScholarPubMed
Siegal, M. & Varley, R. (2002) Neural systems involved in “theory of mind.” Nature Reviews. Neuroscience 3:463–71. [OD]10.1038/nrn844CrossRefGoogle ScholarPubMed
Sirigu, A. & Duhamel, J. R. (2001) Motor and visual imagery as two complementary but neurally dissociable mental processes. Journal of Cognitive Neuroscience 13:910–19. [VG, BT]10.1162/089892901753165827CrossRefGoogle ScholarPubMed
Sirigu, A., Duhamel, J. R., Cohen, L., Pillon, B., Dubois, B. & Agid, Y. (1996) The mental representation of hand movements after parietal cortex damage. Science 273(5281):1564–68. [VG, BT]10.1126/science.273.5281.1564CrossRefGoogle ScholarPubMed
Smyrnis, N., Taira, M., Ashe, J. & Georgopoulos, A. P. (1992) Motor cortical activity in a memorized delay task. Experimental Brain Research 92:139–51. [BT]10.1007/BF00230390CrossRefGoogle Scholar
Snyder, L. H., Grieve, K. L., Brotchie, P. & Andersen, R. A. (1998) Separate bodyand world-referenced representations of visual space in parietal cortex. Nature 394:887–91. [KS]10.1038/29777CrossRefGoogle Scholar
Spencer, J. P. & Schöner, G. (2003) Bridging the representational gap in the dynamic systems approach to development. Developmental Science 6(4): 392–412. [FCG]10.1111/1467-7687.00295CrossRefGoogle Scholar
Sperry, R. W. (1950) Neural basis of the spontaneous optokinetic response produced by vision inversion. Journal of Comparative and Physiological Psychology 43:482–89. [DMM, BW]10.1037/h0055479CrossRefGoogle ScholarPubMed
Stein, B. E. & Meredith, M. A. (1993) Merging of the senses. MIT Press. [KS]Google Scholar
Stein, L. A. (1994) Imagination and situated cognition. Journal of Experimental and Theoretical Artificial Intelligence 6:393407. [aRG, LAS]10.1080/09528139408953795CrossRefGoogle Scholar
Stephan, K. M., Fink, G. R., Passingham, R. E., Silbersweig, D., Ceballos- Baumann, A. O., Frith, C. D. & Frackowiack, R. S. J. (1995) Functional anatomy of the mental representation of upper extremity movements in healthy subjects. Journal of Neurophysiology 73:373–86. [BT]10.1152/jn.1995.73.1.373CrossRefGoogle ScholarPubMed
Sternad, D. (2002) Wachholder, K & Altenburger, H (1927) Foundational experiments for current hypotheses on equilibrium point control in voluntary movements. Motor Control 6:299318. [Historical overview, English translation, and commentaries on Wachholder & Altenburger 1927 by D. Sternad.] [MLL]10.1123/mcj.6.4.299CrossRefGoogle ScholarPubMed
Stojanov, G. (1997 ) Expectancy theory and interpretation of electroexpectograms (EXG) curves in the context of biological and machine intelligence. Ph.D. Thesis, Electrical Engineering Faculty, Saints Cyril and Methodius University, Skopje, Macedonia. [GS]Google Scholar
Stojanov, G., Bozinovski, S. & Bozinovska, L. (1996) AV control system which makes use of environment stabilizations. In: SPIE Proceedings, vol. 2903: Mobile Robots XI and Automated Vehicle Control Systems, ed. Kenyon, C. H. & Kachroo, P., pp. 4451. SPIE. [GS]Google Scholar
Stojanov, G., Bozinovski, S. & Trajkovski, G. (1997a) Interactionist expectative view on agency and learning. IMACS Journal of Mathematics and Computers in Simulation 44:295310. [GS]10.1016/S0378-4754(97)00057-8CrossRefGoogle Scholar
Stojanov, G., Bozinovski, S. & Trajkovski, G. (1997b) The status of representation in behaviour based robotic systems: The problem and a solution. Paper presented at the IEEE Conference on Systems, Man, and Cybernetics, Orlando, FL, 1997. [GS]Google Scholar
Stojanov, G., Stefanovski, S. & Bozinovski, S. (1995) Expectancy based emergent environment models for autonomous agents. Proceedings of the 5th International Symposium on Automatic Control and Computer Science, Iasi, Romania 1:217–21. [GS]Google Scholar
Sutton, R. S. & Barto, A. G. (1998) Reinforcement learning: An introduction. MIT Press. [HW]Google Scholar
Tagaris, G. A., Richter, W., Kim, S-G., Pellizzer, G. & Anderson, P. (1998) Functional magnetic resonance imaging of mental rotation and memory scanning: A multidimensional scaling analysis of brain activation patterns. Brain Research Reviews 26:106–12. [BT]10.1016/S0165-0173(97)00060-XCrossRefGoogle ScholarPubMed
Talmy, L. (2000a) Fictive motion in language and ‘ception’. In: Toward a cognitive semantics, vols. 1 & 2, ed. Talmy, L.. MIT Press. [rRG]Google Scholar
Talmy, L. (2000b) Toward a cognitive semantics. MIT Press. [aRG]Google Scholar
Tarsitano, M. S. & Andrew, R. (1999) Scanning and route selection in the jumping spider Portia labiata. Animal Behaviour 280:255–65. [BW]10.1006/anbe.1999.1138CrossRefGoogle Scholar
Thelen, E., Schöner, G., Scheier, C. & Smith, L. B. (2001) The dynamics of embodiment: A dynamic field theory of infant perseverative reaching errors. Behavioral and Brain Sciences 24:186. [FCG]10.1017/S0140525X01003910CrossRefGoogle Scholar
Thomassen, A. J. W. M. & Tibosch, H. J. C. M. (1991) A quantitative model of graphic production. In: Tutorials in motor neuroscience, ed. Stelmach, G. E. & Requin, J.. Kluwer. [ADS]Google Scholar
Todorov, E. & Jordan, M. I. (2002) Optimal feedback control as a theory of motor coordination. Nature Neuroscience 5:1226–35. [VG]10.1038/nn963CrossRefGoogle ScholarPubMed
Tomasello, M. (1999) The cultural origins of human cognition. Harvard University Press. [PG]Google Scholar
Tomasino, B., Borroni, P., Isaja, A., Baldiserra, F. & Rumiati, R. I. (in press) The primary motor cortex subserves not only movements but also their imagination. Cognitive Neuropsychology. [BT]Google Scholar
Turvey, M. T. (1990) Coordination. American Psychologist 45:938–53. [RB]10.1037/0003-066X.45.8.938CrossRefGoogle ScholarPubMed
Tversky, B. (2000) Remembering spaces. In: The Oxford handbook of memory, ed. Tulving, E. & Craik, F. I. M.. Oxford University Press. [HW]Google Scholar
Ungerleider, L. G. & Haxby, J. V. (1994) “What” and “where” in the human brain. Current Opinion in Neurobiology 4(2):157–65. [aRG]10.1016/0959-4388(94)90066-3CrossRefGoogle Scholar
van Beers, R. J., Sittig, A. C. & Gon, J. J. (1999) Integration of proprioceptive and visual position-information: An experimentally supported model. Journal of Neurophysiology 81:1355–64. [VG]10.1152/jn.1999.81.3.1355CrossRefGoogle ScholarPubMed
van Beers, R. J., Wolpert, D. M. & Haggard, P. (2002) When feeling is more important than seeing in sensorimotor adaptation. Current Biology 12:834–37. [VG]10.1016/S0960-9822(02)00836-9CrossRefGoogle ScholarPubMed
van der Meulen, J. H. P., Gooskens, R. H. J. M., van der Gon, J. J. D., Gielen, C. C. A. M. & Wilhelm, K. (1990) Mechanisms underlying accuracy in fast goaldirected arm movements in man. Journal of Motor Behavior 22(1):6784. [aRG]10.1080/00222895.1990.10735502CrossRefGoogle ScholarPubMed
van Galen, G. P. (1980) Handwriting and drawing: A two stage model of complex motor behaviour. In: Tutorials in motor behaviour, ed. Stelmach, G. E. & Requin, J.. North-Holland. [ADS]Google Scholar
van Hoek, K. (1995) Conceptual reference points: A cognitive grammar account of pronominal anaphora constraints. Language 71(2):310–40. [aRG]10.2307/416165CrossRefGoogle Scholar
van Hoek, K. (1997) Anaphora and conceptual structure. University of Chicago Press. [aRG]Google Scholar
van Pabst, J. V. L. & Krekel, P. F. C. (1993) Multi sensor data fusion of points, line segments and surface segments in 3D space. In: 7th International Conference on Image Analysis and Processing, Capitolo, Monopoli, Italy, pp. 174–82. World Scientific. [aRG]Google Scholar
van Sommers, P. (1984) Drawing and cognition. Cambridge University Press. [ADS]10.1017/CBO9780511897672CrossRefGoogle Scholar
van Sommers, P. (1989) A system for drawing and drawing-related neuropsychology. Cognitive Neuropsychology 6:117–64. [ADS]10.1080/02643298908253416CrossRefGoogle Scholar
Vandervert, L. (1995) Chaos theory and the evolution of consciousness and mind: A thermodynamic-holographic resolution to the mind-body problem. New Ideas in Psychology 13(2):107–27. [JSJ]10.1016/0732-118X(94)00047-7CrossRefGoogle Scholar
Verfaillie, K. & Daems, A. (2002) Representing and anticipating human actions in vision. Visual Cognition 9:217–32. [MWi]10.1080/13506280143000403CrossRefGoogle Scholar
Verfaillie, K., de Troy, A. & van Rensbergen, J. (1994) Transsaccadic integration of biological motion. Journal of Experimental Psychology: Learning, Memory, and Cognition 20:649–70. [MWi]Google ScholarPubMed
Verfaillie, K. & d’Ydewalle, G. (1991) Representational momentum and event course anticipation in the perception of implied periodical motions. Journal of Experimental Psychology: Learning, Memory, and Cognition 17:302–13. [MWi]Google ScholarPubMed
Vinter, A. (1994) Hierarchy among graphic production rules: A developmental approach. In: Advances in handwriting and drawing: A multidisciplinary approach, ed. Faure, C., Keuss, P., Lorette, G. & Vinter, A.. Europia. [ADS]Google Scholar
Vinter, A. & Perruchet, P. (1999) Isolating unconscious influences: The neutral parameter procedure. Quarterly Journal of Experimental Psychology 52A:857– 75. [ADS]10.1080/713755857CrossRefGoogle Scholar
Viviani, P. & Stucchi, N. (1989) The effect of movement velocity on form perception: Geometric illusions in dynamic displays. Perception and Psychophysics 46(3):266–74. [VG]10.3758/BF03208089CrossRefGoogle ScholarPubMed
Viviani, P. & Stucchi, N. (1992) Biological movements look uniform: Evidence of motor-perceptual interactions. Journal of Experimental Psychology: Human Perception and Performance 18(3):603–23. [VG]Google ScholarPubMed
von Helmholtz, H. (1910) Handbuch der physiologischen optik, vol. 3, 3rd edition, ed. Gullstrand, A., von Kries, J. & Nagel, W.. Voss. [aRG]Google Scholar
von Holst, E. (1954) Relations between the central nervous system and the peripheral organs. British Journal of Animal Behavior 2:8994. [DMM, OW]10.1016/S0950-5601(54)80044-XCrossRefGoogle Scholar
von Holst, E. & Mittelstädt, H. (1950/1973) Das Reafferenzprinzip: Wechselwirkungen zwischen Zentralnerven-system und Peripherie. Naturwissenschaften 37:467–76. (Original German publication, 1950.) English translation, 1973: The reafference principle. In: The behavioral physiology of animals and man. The collected papers of Erich von Holst, trans. R. Martin, pp. 139–73. University of Miami Press. [JSJ, MLL, DMM, BW]10.1007/BF00622503CrossRefGoogle Scholar
von Uexkull, J. (1926) Theoretische Biologie. Suhrkamp. [DMM]Google Scholar
Wachholder, K. & Altenburger, H. (1927/2002) Do our limbs have only one rest length. Simultaneously a contribution to the measurement of elastic forces in active and passive movements. Pflüger's Archive für die gesamte Physiologie 215:627–40. (English translation by D. Sternard, 2002.) [see trans. in Sternad 2002]. [MLL]10.1007/BF01731339CrossRefGoogle Scholar
Wachholder, K. & Altenburger, H. (2002) Foundational experiments for current hypotheses on equilibrium point control in voluntary movements. Motor Control 6:299318. (English translation by D. Sternard, 2002.) [MLL]Google Scholar
Walter, C. B., Swinnen, S. P., Dounskaia, N. & van Langendonk, H. (2001) Systematic error in the organization of physical action. Cognitive Science 25:393422. [CBW]10.1207/s15516709cog2503_3CrossRefGoogle Scholar
Wang, H., Johnson, T. R. & Zhang, J. (2001) The mind's views of space. In: Proceedings of the Third International Conference of Cognitive Science. Beijing. [HW]Google Scholar
Jr.Warren, W. H., Kay, B. A., Zosh, W. D., Duchon, A. P. & Sahuc, S. (2001) Optic flow is used to control human walking. Nature Neuroscience 4:213–16. [MLL]10.1038/84054CrossRefGoogle ScholarPubMed
Weinstein, S. & Sersen, E. (1961) Phantoms in cases of congenital absence of limbs. Neurology 11:905–11. [VS]10.1212/WNL.11.10.905CrossRefGoogle ScholarPubMed
Weiss, Y., Simoncelli, E. P. & Adelson, E. H. (2002) Motion illusions as optimal percepts. Nature Neuroscience 5:598604. [VG]10.1038/nn0602-858CrossRefGoogle ScholarPubMed
Wellman, H. M. (1990) The child's theory of mind. MIT Press. [aRG]10.7551/mitpress/1811.001.0001CrossRefGoogle Scholar
Wexler, M. & Klam, F. (2001) Movement prediction and movement production. Journal of Experimental Psychology: Human Perception and Performance 27:4864. [MW]Google ScholarPubMed
Wexler, M., Kosslyn, S. M. & Berthoz, A. (1998) Motor processes in mental rotation. Cognition 68:7794. [aRG, VG, MW]10.1016/S0010-0277(98)00032-8CrossRefGoogle ScholarPubMed
Wexler, M., Panerai, F., Lamouret, I. & Droulez, J. (2001) Self-motion and the perception of stationary objects. Nature 409:8588. [MW]10.1038/35051081CrossRefGoogle ScholarPubMed
Wickens, T. D. (1993) Analysis of contingency tables with between-subjects variability. Psychological Bulletin 113:191204. [ADS]10.1037/0033-2909.113.1.191CrossRefGoogle Scholar
Wiener, N. (1950) The human use of human beings: Cybernetics and society. Houghton Mifflin. [VG]Google Scholar
Wiener, O. (1988) Form and content in thinking Turing machines. In: The universal Turing machine, ed. Herken, R., pp. 631–57. Oxford University Press. [OW]Google Scholar
Wiener, O. (1996) Schriften zur Erkenntnistheorie. Springer. [OW]10.1007/978-3-7091-6588-1CrossRefGoogle Scholar
Wiener, O. (1998) “Klischee” als Bedingung intellektueller und künstlerischer Kreativität. In: Literarische Aufsätze, pp. 113–38. Löcker. [OW]Google Scholar
Wiener, O. (2000) Materialien zu meinem Buch “Vorstellungen.” Ausschnitt 5, ed. Lesak, F.. Technische Universität Wien. [OW]Google Scholar
Wiener, O. (2002) Anekdoten zu “Struktur.” Ausschnitt 7, ed. Lesak, F., pp. 3045. Technische Universität Wien. [OW] (forthcoming) Vorstellungen. Springer. [OW]Google Scholar
Wilson, M. (2001) Perceiving imitatible stimuli: Consequences of isomorphism between input and output. Psychological Bulletin 127:543–53. [MWi]10.1037/0033-2909.127.4.543CrossRefGoogle ScholarPubMed
Wise, S. P., Moody, S. L., Blomstrom, K. J. & Mitz, A. R. (1998) Changes in motor cortical activity during visuomotor adaptation. Experimental Brain Research 121:285–99. [BT]10.1007/s002210050462CrossRefGoogle ScholarPubMed
Wohlschläger, A. (1998) Mental and manual rotation. Journal of Experimental Psychology: Human Perception and Performance 24:397412. [MW]Google ScholarPubMed
Wohlschläger, A. (2001) Mental object rotation and the planning of hand movements. Perception and Psychophysics 63:709–18. [ADS]10.3758/BF03194431CrossRefGoogle ScholarPubMed
Wolpert, D. M., Ghahramani, Z. & Flanagan, J. R. (2001) Perspectives and problems in motor learning. Trends in Cognitive Sciences 5(11):487–94. [aRG]10.1016/S1364-6613(00)01773-3CrossRefGoogle ScholarPubMed
Wolpert, D. M., Ghahramani, Z. & Jordan, M. I. (1995) An internal model for sensorimotor integration. Science 269:1880–82. [aRG, VG, EMH, MLL, CBW]CrossRefGoogle ScholarPubMed
Wolpert, D. M & Kawato, M. (1998) Multiple paired forward and inverse models for motor control. Neural Networks 11(78):1317–29. [rRG]10.1016/S0893-6080(98)00066-5CrossRefGoogle ScholarPubMed
Wraga, M., Church, J. & Badre, D. (2002) Event-related fMRI study of imaginal self and object rotations. Journal of Cognitive Neuroscience 104:144. [ADS]Google Scholar
Xing, J. & Andersen, R. A. (2000) Models of posterior parietal cortex which perform multimodal integration and represent space in several coordinate frames. Journal of Cognitive Neuroscience 12:601–14. [rRG]10.1162/089892900562363CrossRefGoogle ScholarPubMed
Yang, Y. & Bringsjord, S. (2003) Mental metalogic and its empirical justifications: The case of reasoning with quantifiers and predicates. Proceedings of the Twenty-Fifth Annual Conference of the Cognitive Science Society, ed. Alterman, R. & Kirsch, D., pp. 1275–80. Lawrence Erlbaum Associates. [HW]Google Scholar
Yantis, S. (1992) Multielement visual tracking: Attention and perceptual organization. Cognitive Psychology 24(3):295340. [aRG]10.1016/0010-0285(92)90010-YCrossRefGoogle ScholarPubMed
Zacharias, G. L. & Young, L. R. (1981) Influence of combined visual and vestibular cues on human perception and control of horizontal rotation. Experimental Brain Research 41:159–71. [DMM]10.1007/BF00236605CrossRefGoogle ScholarPubMed
Zajac, F. E., Neptune, R. R. & Kautz, S. A. (2002) Biomechanics and muscle coordination of human walking. Part I: Introduction to concepts, power transfer, dynamics and simulations. Gait and Posture 16:215–32. [RB]10.1016/S0966-6362(02)00068-1CrossRefGoogle ScholarPubMed
Zajonc, R. B. & Markus, H. (1984) Affect and cognition: The hard interface. In: Emotions, cognition, and behavior, ed. Izard, C., Kagan, J. & Zajonc, R. B., pp. 73102. Cambridge University Press. [CLR]Google Scholar
Zaretsky, M. & Rowell, C. H. F. (1979) Saccadic suppression by corollary discharge in the locust. Nature 280:583–85. [BW]10.1038/280583a0CrossRefGoogle ScholarPubMed
Zhang, J. (1997) The nature of external representations in problem solving. Cognitive Science 21(2):179217. [HW]10.1207/s15516709cog2102_3CrossRefGoogle Scholar
Zhang, J. & Norman, D. A. (1994) Representations in distributed cognitive tasks. Cognitive Science 18:87122. [HW]10.1207/s15516709cog1801_3CrossRefGoogle Scholar
Zupan, L., Droulez, J., Darlot, C., Denise, P. & Maruani, A. (1994) Modelization of vestibulo-ocular reflex (VOR) and motion sickness prediction. Paper presented at the International Congress on Application of Neural Networks, Sorrento, Italy, 1994. [DMM]CrossRefGoogle Scholar
Zupan, L. H. & Merfeld, D. M. (2003) Neural processing of gravito-inertial cues in humans, IV. Influence of visual rotational cues during roll optokinetic stimuli. Journal of Neurophysiology 89(1):390400. [DMM]10.1152/jn.00513.2001CrossRefGoogle ScholarPubMed
Zupan, L., Merfeld, D. M. & Darlot, C. (2002) Using sensory weighting to model the influence of canal, otolith and visual cues on spatial orientation and eye movements. Biological Cybernetics 86:209–30. [DMM]10.1007/s00422-001-0290-1CrossRefGoogle ScholarPubMed
Zupan, L., Peterka, R. & Merfeld, D. (2000) Neural processing of gravito-inertial cues in humans: I. Influence of the semicircular canals following post-rotatory tilt. Journal of Neurophysiology 84:2001–15. [DMM]10.1152/jn.2000.84.4.2001CrossRefGoogle ScholarPubMed