Skip to main content Accessibility help
×
Home
Hostname: page-component-558cb97cc8-4xlcd Total loading time: 0.958 Render date: 2022-10-06T05:20:23.060Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": true, "useSa": true } hasContentIssue true

Leveraging decision consistency to decompose suboptimality in terms of its ultimate predictability

Published online by Cambridge University Press:  10 January 2019

Valentin Wyart*
Affiliation:
Laboratoire de Neurosciences Cognitives et Computationnelles, Institut National de la Santé et de la Recherche Médicale, Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL University, 75005 Paris, France. valentin.wyart@ens.frhttp://lnc2.dec.ens.fr/inference-and-decision-making

Abstract

Although the suboptimality of perceptual decision making is indisputable in its strictest sense, characterizing the nature of suboptimalities constitutes a valuable drive for future research. I argue that decision consistency offers a rarely measured, yet important behavioral metric for decomposing suboptimality (or, more generally, deviations from any candidate model of decision making) into ultimately predictable and inherently unpredictable components.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Drugowitsch, J., Wyart, V., Devauchelle, A.-D. & Koechlin, E. (2016) Computational precision of mental inference as critical source of human choice suboptimality. Neuron 92(6):1398–411. Available at: http://dx.doi.org/10.1016/j.neuron.2016.11.005.CrossRefGoogle ScholarPubMed
Girshick, A. R., Landy, M. S. & Simoncelli, E. P. (2011) Cardinal rules: Visual orientation perception reflects knowledge of environmental statistics. Nature Neuroscience 14(7):926–32. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3125404&tool=pmcentrez&rendertype=abstract.CrossRefGoogle ScholarPubMed
Green, D. M. & Swets, J. A. (1966) Signal detection theory and psychophysics. John Wiley & Sons.Google Scholar
Marr, D. (1982) Vision: A computational investigation into the human representation and processing of visual information. W. H. Freeman.Google Scholar
Palminteri, S., Wyart, V. & Koechlin, E. (2017) The importance of falsification in computational cognitive modeling. Trends in Cognitive Sciences 21(6):425–33.CrossRefGoogle ScholarPubMed
Wei, X.-X. & Stocker, A. A. (2015) A Bayesian observer model constrained by efficient coding can explain “anti-Bayesian” percepts. Nature Neuroscience 18:1509–17. Available at: http://dx.doi.org/10.1038/nn.4105.CrossRefGoogle ScholarPubMed
Wyart, V. & Koechlin, E. (2016) Choice variability and suboptimality in uncertain environments. Current Opinion in Behavioral Sciences 11:109–15. Available at: http://dx.doi.org/10.1016/j.cobeha.2016.07.003.CrossRefGoogle Scholar
1
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Leveraging decision consistency to decompose suboptimality in terms of its ultimate predictability
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Leveraging decision consistency to decompose suboptimality in terms of its ultimate predictability
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Leveraging decision consistency to decompose suboptimality in terms of its ultimate predictability
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *