Hostname: page-component-797576ffbb-tx785 Total loading time: 0 Render date: 2023-12-02T01:46:32.610Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence

Published online by Cambridge University Press:  26 July 2007

Rex E. Jung
Departments of Neurology and Psychology, University of New Mexico, and The MIND Research Network, Albuquerque, NM
Richard J. Haier
School of Medicine, Med Sc I; C237, University of California, Irvine, CA 92697-4475rjhaier@uci.edu


“Is there a biology of intelligence which is characteristic of the normal human nervous system?” Here we review 37 modern neuroimaging studies in an attempt to address this question posed by Halstead (1947) as he and other icons of the last century endeavored to understand how brain and behavior are linked through the expression of intelligence and reason. Reviewing studies from functional (i.e., functional magnetic resonance imaging, positron emission tomography) and structural (i.e., magnetic resonance spectroscopy, diffusion tensor imaging, voxel-based morphometry) neuroimaging paradigms, we report a striking consensus suggesting that variations in a distributed network predict individual differences found on intelligence and reasoning tasks. We describe this network as the Parieto-Frontal Integration Theory (P-FIT). The P-FIT model includes, by Brodmann areas (BAs): the dorsolateral prefrontal cortex (BAs 6, 9, 10, 45, 46, 47), the inferior (BAs 39, 40) and superior (BA 7) parietal lobule, the anterior cingulate (BA 32), and regions within the temporal (BAs 21, 37) and occipital (BAs 18, 19) lobes. White matter regions (i.e., arcuate fasciculus) are also implicated. The P-FIT is examined in light of findings from human lesion studies, including missile wounds, frontal lobotomy/leukotomy, temporal lobectomy, and lesions resulting in damage to the language network (e.g., aphasia), as well as findings from imaging research identifying brain regions under significant genetic control. Overall, we conclude that modern neuroimaging techniques are beginning to articulate a biology of intelligence. We propose that the P-FIT provides a parsimonious account for many of the empirical observations, to date, which relate individual differences in intelligence test scores to variations in brain structure and function. Moreover, the model provides a framework for testing new hypotheses in future experimental designs.

Main Articles
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Aboitiz, F. (1992) The origin of the mammalian brain as a case of evolutionary irreversibility. Medical Hypotheses 38(4):301304.Google Scholar
Allen, J. S., Bruss, J., Brown, C. K. & Damasio, H. (2005) Methods for studying the aging brain: Volumetric analyses versus VBM. Neurobiology of Aging 26(9):1275–78.Google Scholar
Alpherts, W. C., Vermeulen, J., Hendriks, M. P., Franken, M. L., van Rijen, P.C., Lopes da Silva, F. H. & van Veelen, C. W. (2004) Long-term effects of temporal lobectomy on intelligence. Neurology 62(4):607–11.Google Scholar
Andreasen, N. C., Flaum, M., SwayzeV., II V., II, O'Leary, D. S., Alliger, R., Cohen, G., Ehrhardt, J. & Yuh, W. T. (1993) Intelligence and brain structure in normal individuals. American Journal of Psychiatry 150(1):130–34.Google Scholar
Archibald, Y. M., Wepman, J. M. & Jones, L. V. (1967) Performance on nonverbal cognitive tests following unilateral cortical injury to the right and left hemisphere. Journal of Nervous and Mental Disease 145(1):2536.Google Scholar
Arrigoni, G. & De Renzi, E. (1964) Constructional apraxia and hemispheric locus of lesion. Cortex 1:170–97.Google Scholar
Arthurs, O. J. & Boniface, S. (2002) How well do we understand the neural origins of the fMRI BOLD signal? Trends in Neurosciences 25(1):2731.Google Scholar
Ashburner, J. & Friston, K. J. (1997) Multimodal image coregistration and partitioning – A unified framework. NeuroImage 6(3):209–17.Google Scholar
Ashburner, J. & Friston, K. J. (2000) Voxel-based morphometry – The methods. NeuroImage 11(6, Pt 1): 805–21.Google Scholar
Ashburner, J. & Friston, K. J. (2001) Why voxel-based morphometry should be used. NeuroImage 14(6):1238–43.Google Scholar
Atherton, M., Zhuang, J., Bart, W. M., Hu, X. & He, S. (2003) A functional MRI study of high-level cognition. I. The game of chess. Cognitive Brain Research 16(1):2631.Google Scholar
Balish, M. & Muratore, R. (1990) The inverse problem in electroencephalography and magnetoencephalography. Advances in Neurology 54:7988.Google Scholar
Barker, P. B. (2001) N-acetyl aspartate – a neuronal marker? Annals of Neurology 49(4):423–24.Google Scholar
Bartzokis, G., Cummings, J. L., Sultzer, D., Henderson, V. W., Nuechterlein, K. H. & Mintz, J. (2003) White matter structural integrity in healthy aging adults and patients with Alzheimer disease: A magnetic resonance imaging study. Archives of Neurology 60(3):393–98.Google Scholar
Basso, A., Capitani, E., Luzzatti, C. & Spinnler, H. (1981) Intelligence and left hemisphere disease. The role of aphasia, apraxia and size of lesion. Brain 104(Pt 4):721–34.Google Scholar
Basso, A., De Renzi, E., Faglioni, P., Scotti, G. & Spinnler, H. (1973) Neuropsychological evidence for the existence of cerebral areas critical to the performance of intelligence tasks. Brain 96(4):715–28.Google Scholar
Binet, A. (1905) The development of intelligence in children. L'Année Psychologique 12:191244.Google Scholar
Bishop, G. H. & Smith, J. M. (1964) The size of nerve fibers supplying cerebral cortex. Experimental Neurology 59:483501.Google Scholar
Blair, C. (2006) How similar are fluid cognition and general intelligence? A developmental neuroscience perspective on fluid cognition as an aspect of human cognitive ability. Behavioral and Brain Sciences 29(2):109–25.Google Scholar
Boller, F. & Vignolo, L. A. (1966) Latent sensory aphasia in hemisphere-damaged patients: An experimental study with the Token Test. Brain 89:815–30.Google Scholar
Bookstein, F. L. (2001) “Voxel-based morphometry” should not be used with imperfectly registered images. NeuroImage 14(6):1454–62.Google Scholar
Bottomley, P. A., Edelstein, W. A., Foster, T. H. & Adams, W. A. (1985) In vivo solvent-suppressed localized hydrogen nuclear magnetic resonance spectroscopy: A window to metabolism? Proceedings of the National Academy of Sciences USA 82(7):2148–52.Google Scholar
Broca, M. P. (1861) Remarques sur le siège de la faculté du langage articulé, suivies d'une observation d'aphemie (Perte de la Parole). Bulletin de la Société Anatomique Paris 36:330–57.Google Scholar
Brodmann, K. (1912) Neue Ergebnisse uber die vergleichende histologische Lokalisation der Grosshirnrinde mit besonderer Berucksichtigung des Stirnhirns. Anatomischer Anzeiger (Suppl.) 41:157216.Google Scholar
Burrell, B. (2005) Postcards from the brain museum: The improbable search for meaning in the matter of famous minds. Broadway Books.Google Scholar
Cabeza, R. & Nyberg, L. (2000) Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience 12(1):147.Google Scholar
Chabris, C. F. (2006) Cognitive and neurobiological mechanisms of the law of general intelligence. In: Integrating the mind, ed. Roberts, M. J.. Psychology Press.Google Scholar
Chen, X. C., Zhang, D., Zhang, X. C., Li, Z. H., Meng, X. M., He, S. & Hu, X. P. (2003) A functional MRI study of high-level cognition – II. The game of GO. Cognitive Brain Research 16(1):3237.Google Scholar
Cochrane, N. & Kljajic, I. (1979) The effects on intellectual functioning of open prefrontal leucotomy. Medical Journal of Australia 1(7):258–60.Google Scholar
Colom, R., Abad, F. J., Garcia, L. F. & Juan-Espinosa, M. (2002) Education, Wechsler's Full Scale IQ, and g. Intelligence 30(5):449–62.Google Scholar
Colom, R., Jung, R. E. & Haier, R. J. (2006a) Distributed brain sites for the g-factor of intelligence. NeuroImage 31(3):1359–65.Google Scholar
Colom, R., Jung, R. E. & Haier, R. J. (2006b) Finding the g-factor in brain structure using the method of correlated vectors. Intelligence 34(6):561–70.Google Scholar
Colom, R., Rebollo, I., Palacios, A., Juan-Espinosa, M. & Kyllonen, P. C. (2004) Working memory is (almost) perfectly predicted by g. Intelligence 32(3):277–96.Google Scholar
Costa, L. D., Vaughan, G. Jr., Horwitz, M. & Ritter, W. (1969) Patterns of behavioral deficit associated with visual spatial neglect. Cortex 5(3):242–63.Google Scholar
Cumming, S., Hay, P., Lee, T. & Sachdev, P. (1995) Neuropsychological outcome from psychosurgery for obsessive-compulsive disorder. Australian and New Zealand Journal of Psychiatry 29(2):293–98.Google Scholar
Darwin, C. R. (1871) The descent of man and selection in relation to sex. John Murray.Google Scholar
Davatzikos, C. (2004) Why voxel-based morphometric analysis should be used with great caution when characterizing group differences. NeuroImage 23(1):1720.Google Scholar
Deary, I. J. & Caryl, P. G. (1997) Neuroscience and human intelligence differences. Trends in Neurosciences 20(8):365–71.Google Scholar
De Renzi, E. & Faglioni, P. (1965) The comparative efficiency of intelligence and vigilance tests in detecting hemispheric cerebral damage. Cortex 1:410–29.Google Scholar
Detterman, D. K. (2000) General intelligence and the definition of phenotypes. Novartis Foundation Symposium 233:136–34; discussion 144–48.Google Scholar
Draganski, B., Gaser, C., Kempermann, G., Kuhn, H. G., Winkler, J., Buchel, C. & May, A. (2006) Temporal and spatial dynamics of brain structure changes during extensive learning. Journal of Neuroscience 26(23):6314–17.Google Scholar
Duncan, J. (2005) Frontal lobe function and general intelligence: Why it matters. Cortex 41(2):215–27.Google Scholar
Duncan, J., Burgess, P. & Emslie, H. (1995) Fluid intelligence after frontal lobe lesions. Neuropsychologia 33(3):261–68.Google Scholar
Duncan, J. & Owen, A. M. (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences 23(10):475–83.Google Scholar
Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A., Newell, F. N. & Emslie, H. (2000) A neural basis for general intelligence. Science 289(5478):457–60.Google Scholar
Esposito, G., Kirkby, B. S., Van Horn, J. D., Ellmore, T. M. & Berman, K. F. (1999) Context-dependent, neural system-specific neurophysiological concomitants of ageing: Mapping PET correlates during cognitive activation. Brain 122(Pt 5):963–79.Google Scholar
Evans, P. D., Gilbert, S. L., Mekel-Bobrov, N., Vallender, E. J., Anderson, J. R., Vaez-Azizi, L. M., Tishkoff, S. A., Hudson, R. R. & Lahn, B. T. (2005) Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans. Science 309(5741):1717–20.Google Scholar
Fangmeier, T., Knauff, M., Ruff, C. C. & Sloutsky, V. (2006) fMRI evidence for a three-stage model of deductive reasoning. Journal of Cognitive Neuroscience 18(3):320–34.Google Scholar
Fellows, L. K., Heberlein, A. S., Morales, D. A., Shivde, G., Waller, S. & Wu, D. H. (2005) Method matters: An empirical study of impact in cognitive neuroscience. Journal of Cognitive Neuroscience 17(6):850–58.Google Scholar
Ferguson, K. J., MacLullich, A. M., Marshall, I., Deary, I. J., Starr, J. M., Seckl, J. R. & Wardlaw, J. M. (2002) Magnetic resonance spectroscopy and cognitive function in healthy elderly men. Brain 125(Pt 12):2743–49.Google Scholar
Flashman, L. A., Andreasen, N. C., Flaum, M. & Swayze, V. W. (1997) Intelligence and regional brain volumes in normal controls. Intelligence 25(3):149–60.Google Scholar
Flourens, M. J. P. (1824) Recherches experimentales sur les proprietes et les fonctions du systeme nerveux dans les animaux vertibres. Crevot.Google Scholar
Frangou, S., Chitins, X. & Williams, S. C. R. (2004) Mapping IQ and gray matter density in healthy young subjects. NeuroImage 23:800805.Google Scholar
Freeman, W. & Watts, J. C. (1942) Psychosurgery: Intelligence, emotion, and social behavior following prefrontal lobotomy for mental disorders. Charles C. Thomas.Google Scholar
Friede, R. L. & Samorajski, T. (1967) Relation between the number of myelin lamellae and axon circumference in fibers of vagus and sciatic nerves of mice. Journal of Comparative Neurology 130(3):223–31.Google Scholar
Fulton, J. F. (1928) Observations upon the vascularity of the human occipital lobe during visual activity. Brain 51:310–20.Google Scholar
Gainotti, G., D'Erme, P., Villa, G. & Caltagirone, C. (1986) Focal brain lesions and intelligence: A study with a new version of Raven's Coloured Matrices. Journal of Clinical and Experimental Neuropsychology 8(1):3750.Google Scholar
Galaburda, A. M. (1999) Albert Einstein's brain. Lancet 354:1821.Google Scholar
Gall, F. J. (1825) Sur les fonctions du cerveau et sur celles de chacune de ses parties. Bailliere.Google Scholar
Galton, F. (1869) Hereditary genius. Macmillan.Google Scholar
Gardner, H. (1993a) Creating minds. Basic Books.Google Scholar
Gasparovic, C., Song, T., Devier, D., Bockholt, H. J., Caprihan, A., Mullins, P. G., Posse, S., Jung, R. E. & Morrison, L. (2006) Use of tissue water as a concentration reference for proton spectroscopic imaging. Magnetic Resonance in Medicine 55(6):1219–26.Google Scholar
Geake, J. G. & Hansen, P. C. (2005) Neural correlates of intelligence as revealed by fMRI of fluid analogies. NeuroImage 26(2):555–64.Google Scholar
Geschwind, N. (1965) Disconnexion syndromes in animals and man. I. Brain 88(2):237–94.Google Scholar
Geschwind, N. & Levitsky, W. (1968) Human brain: Left-right asymmetries in temporal speech region. Science 161:186–87.Google Scholar
Ghatan, P. H., Hsieh, J. C., Wirsen-Meurling, A., Wredling, R., Eriksson, L., Stone-Elander, S., Levander, S. & Ingvar, M. (1995) Brain activation induced by the perceptual maze test: A PET study of cognitive performance. NeuroImage 2(2):112–24.Google Scholar
Gignac, G., Vernon, P. A. & Wicket, J. C. (2003) Factors influencing the relationship between brain size and intelligence. In: The scientific study of general intelligence, ed. Nyborg, H., pp. 93106. Pergamon Press.Google Scholar
Giuliani, N. R., Calhoun, V. D., Pearlson, G. D., Francis, A. & Buchanan, R. W. (2005) Voxel-based morphometry versus region of interest: A comparison of two methods for analyzing gray matter differences in schizophrenia. Schizophrenia Research 74(2–3):135–47.Google Scholar
Goel, V. & Dolan, R. J. (2001) Functional neuroanatomy of three-term relational reasoning. Neuropsychologia 39(9):901909.Google Scholar
Goel, V. & Dolan, R. J. (2004) Differential involvement of left prefrontal cortex in inductive and deductive reasoning. Cognition 93(3):B109–21.Google Scholar
Goel, V., Gold, B., Kapur, S. & Houle, S. (1997) The seats of reason? An imaging study of deductive and inductive reasoning. NeuroReport 8(5):1305–10.Google Scholar
Goel, V., Gold, B., Kapur, S. & Houle, S. (1998) Neuroanatomical correlates of human reasoning. Journal of Cognitive Neuroscience 10(3):293302.Google Scholar
Goldman-Rakic, P. S. (1987) Circuitry of the frontal association cortex and its relevance to dementia. Archives of Gerontology and Geriatrics 6(3):299309.Google Scholar
Goldstein, K. (1942) After-effects of brain injuries in war. Heinemann.Google Scholar
Gong, Q. Y., Sluming, V., Mayes, A., Keller, S., Barrick, T., Cezayirli, E. & Roberts, N. (2005) Voxel-based morphometry and stereology provide convergent evidence of the importance of medial prefrontal cortex for fluid intelligence in healthy adults. NeuroImage 25(4):1175–86.Google Scholar
Good, C. D., Scahill, R. I., Fox, N. C., Ashburner, J., Friston, K. J., Chan, D., Crum, W. R., Rossor, M. N. & Frackowiak, R. S. (2002) Automatic differentiation of anatomical patterns in the human brain: Validation with studies of degenerative dementias. NeuroImage 17(1):2946.Google Scholar
Grabner, R. H., Neubauer, A. C. & Stern, E. (2006) Superior performance and neural efficiency: The impact of intelligence and expertise. Brain Research Bulletin 69(4):422–39.Google Scholar
Gray, J. R., Chabris, C. F. & Braver, T. S. (2003) Neural mechanisms of general fluid intelligence. Nature Neuroscience 6(3):316–22.Google Scholar
Gray, J. R. & Thompson, P. M. (2004) Neurobiology of intelligence: Science and ethics. Nature Reviews Neuroscience 5(6):471–82.Google Scholar
Gur, R. C., Gur, R. E., Obrist, W. D., Hungerbuhler, J. P., Younkin, D., Rosen, A. D., Skolnick, B. E. & Reivich, M. (1982) Sex and handedness differences in cerebral blood flow during rest and cognitive activity. Science 217(4560):659–61.Google Scholar
Gur, R. C., Gur, R. E., Obrist, W. D., Skolnick, B. E. & Reivich, M. (1987) Age and regional cerebral blood flow at rest and during cognitive activity. Archives of General Psychiatry 44(7):617–21.Google Scholar
Gur, R. C., Gur, R. E., Skolnick, B. E., Resnick, S. M., Silver, F. L., Chawluk, J., Muenz, L., Obrist, W. D. & Reivich, M. (1988) Effects of task difficulty on regional cerebral blood flow: Relationships with anxiety and performance. Psychophysiology 25(4):392–99.Google Scholar
Gur, R. C., Ragland, J. D., Resnick, S. M., Skolnick, B. E., Jaggi, J., Muenz, L. & Gur, R. E. (1994) Lateralized increases in cerebral blood flow during performance of verbal and spatial tasks: Relationship with performance level. Brain and Cognition 24(2):244–58.Google Scholar
Gur, R. C. & Reivich, M. (1980) Cognitive task effects on hemispheric blood flow in humans: Evidence for individual differences in hemispheric activation. Brain and Language 9(1):7892.Google Scholar
Gur, R. C., Turetsky, B. I., Matsui, M., Yan, M., Bilker, W., Hughett, P. & Gur, R. E. (1999) Sex differences in brain grey and white matter in healthy young adults: Correlations with cognitive performance. Journal of Neuroscience 19(10):4065–72.Google Scholar
Haier, R. J. (1993a) Biological and psychometric intelligence: Testing an animal model in humans with PET. In: Current topics in human intelligence, vol. 3, ed. Detterman, D. K., pp. 157–70. Elsevier.Google Scholar
Haier, R. J. (1993b) Cerebral glucose metabolism and intelligence. Biological approaches to the study of human intelligence, ed. Vernon, P. A.. Ablex.Google Scholar
Haier, R. J. (2003) Positron emission tomography studies of intelligence: From psychometrics to neurobiology. In: The scientific study of general intelligence: Tribute to Arthur R. Jensen, ed. Nyborg, H., pp. 4151. Elsevier Science.Google Scholar
Haier, R. J. & Benbow, C. P. (1995) Sex differences and lateralization in temporal lobe glucose metabolism during mathematical reasoning. Developmental Neuropsychology 11(4):405–15.Google Scholar
Haier, R. J., Chueh, D., Touchette, P., Lott, I., Buchsbaum, M. S., Macmillan, D., Sandman, C., Lacasse, L. & Sosa, E. (1995) Brain size and cerebral glucose metabolic rate in nonspecific mental retardation and Down syndrome. Intelligence 20(2):191210.Google Scholar
Haier, R. J., Jung, R. E., Yeo, R. A., Head, K. & Alkire, M. T. (2004) Structural brain variation and general intelligence. NeuroImage 23(1):425–33.Google Scholar
Haier, R. J., Jung, R. E., Yeo, R. A., Head, K. & Alkire, M. T. (2005) The neuroanatomy of general intelligence: Sex matters. NeuroImage 25(1): 320–27.Google Scholar
Haier, R. J., Siegel, B. V., MacLachlan, A., Soderling, E., Lottenberg, S. & Buchsbaum, M. S. (1992a) Regional glucose metabolic changes after learning a complex visuospatial/motor task: A positron emission tomographic study. Brain Research 570(1–2):134–43.Google Scholar
Haier, R. J., Siegel, B. V., Tang, C., Abel, L. & Buchsbaum, M. S. (1992b) Intelligence and changes in regional cerebral glucose metabolic-rate following learning. Intelligence 16(3–4):415–26.Google Scholar
Haier, R. J., Siegel, B. V., Nuechterlein, K. H., Hazlett, E., Wu, J. C., Paek, J., Browning, H. L. & Buchsbaum, M. S. (1988) Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence 12(2):199217.Google Scholar
Haier, R. J., Thompson, P. M., Prabhakaran, V., Gray, J. R., Neubauer, A., Stough, C. & Jung, R. E. (2003a) Brain imaging studies of intelligence. Papers presented at the International Society for Intelligence Research Annual Meeting, Newport Beach, CA, December 2003.Google Scholar
Haier, R. J., White, N. S. & Alkire, M. T. (2003b) Individual differences in general intelligence correlate with brain function during non-reasoning tasks. Intelligence 31(5):429–41.Google Scholar
Hale, S., Myerson, J. & Wagstaff, D. (1987) General slowing of nonverbal information-processing – Evidence for a power law. Journal of Gerontology 42(2):131–36.Google Scholar
Halstead, W. C. (1947) Brain and intelligence. University of Chicago Press.Google Scholar
Harlow, J. M. (1848) Passage of an iron rod through the head. Boston Medical and Surgical Journal 39:389–93.Google Scholar
Harlow, J. M. (1868) Recovery from the passage of an iron bar through the head. Bulletin of the Massachusetts Medical Society 1:320.Google Scholar
Haug, H. (1987) Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: A stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant). American Journal of Anatomy 180:126–42.Google Scholar
Head, H. (1926) Aphasia and kindred disorders of speech. Cambridge University Press.Google Scholar
Helmstaedter, C. & Lendt, M. (2001) Neuropsychological outcome of temporal and extratemporal lobe resections in children. In: Neuropsychology of childhood epilepsy, ed. Jambaque, I., Lassonde, M. & Dulac, O., pp. 215–27. Kluwer Academic/Plenum Press.Google Scholar
Hines, T. (1998) Further on Einstein's brain. Experimental Neurology 150:343–44.Google Scholar
Holland, S. K., Plante, E., Weber Byars, A., Strawsburg, R. H., Schmithorst, V. J. & Ball, W. S. Jr. (2001) Normal fMRI brain activation patterns in children performing a verb generation task. NeuroImage 14(4):837–43.Google Scholar
Huang, M. X., Lee, R. R., Miller, G. A., Thoma, R. J., Hanlon, F. M., Paulson, K. M., Martin, K., Harrington, D. L., Weisend, M. P., Edgar, J. C. & Canive, J. M. (2005) A parietal-frontal network studied by somatosensory oddball MEG responses, and its cross-modal consistency. NeuroImage 28(1):99114.Google Scholar
Hunt, T. (1940) Psychological testing of psychiatric patients undergoing prefrontal lobotomy. Psychological Bulletin 37:566.Google Scholar
Hutton, E. L. (1942) Investigation of personaltiy in paitents treated by prefrontal leukotomy. Journal of Mental Science 88: 275–81.Google Scholar
Ingvar, D. H. & Risberg, J. (1967) Increase of regional cerebral blood flow during mental effort in normals and in patients with focal brain disorders. Experimental Brain Research 3(3):195211.Google Scholar
Jackson, A. P., Eastwood, H., Bell, S. M., Adu, J., Toomes, C., Carr, I. M., Roberts, E., Hampshire, D. J., Crow, Y. J., Mighell, A. J., Karbani, G., Jafri, H., Rashid, Y., Mueller, R. F., Markham, A. F. & Woods, C. G. (2002) Identification of microcephalin, a protein implicated in determining the size of the human brain. American Journal of Human Genetics 71(1): 3642.Google Scholar
Jackson, J. H. (1932) Selected writings of John Hughlings Jackson. Hodder & Stoughton.Google Scholar
James, W. (1890) Principles of psychology. Henry Holt.Google Scholar
Jensen, A. R. (1998) The g factor: The science of mental ability. Praeger.Google Scholar
Jung, R. E., Brooks, W. M., Yeo, R. A., Chiulli, S. J., Weers, D. C. & Sibbitt, W. L. Jr. (1999) Biochemical markers of intelligence: A proton MR spectroscopy study of normal human brain. Proceedings of the Royal Society of London; Series B; Biological Sciences 266(1426):1375–79.Google Scholar
Jung, R. E., Haier, R. J., Yeo, R. A., Rowland, L. M., Petropoulos, H., Levine, A. S., Sibbitt, W. L. & Brooks, W. M. (2005) Sex differences in N-acetylaspartate correlates of general intelligence: An 1H-MRS study of normal human brain. NeuroImage 26(3):965–72.Google Scholar
Kandel, E. R., Schwartz, J. H. & Jessell, T. M. (2000) Principles of neural science. McGraw-Hill.Google Scholar
Kane, M. J. & Engle, R. W. (2002) The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin and Review 9(4):637–71.Google Scholar
Kertesz, A. & McCabe, P. (1975) Intelligence and aphasia: Performance of aphasics on Raven's coloured progressive matrices (RCPM). Brain and Language 2(4):387–95.Google Scholar
Kisker, G. W. (1943) Perceptual-motor patterns following bilateral prefrontal lobotomy. Archives of Neurology and Psychiatry 50:691–96.Google Scholar
Kleist, K. (1934) Gehirn-Pathologie vornehmlich auf Grund der Kriegserfahrungen. Barth.Google Scholar
Knauff, M., Fangmeier, T., Ruff, C. C. & Johnson-Laird, P. N. (2003) Reasoning, models, and images: Behavioral measures and cortical activity. Journal of Cognitive Neuroscience 15(4):559–73.Google Scholar
Knauff, M., Mulack, T., Kassubek, J., Salih, H. R. & Greenlee, M. W. (2002) Spatial imagery in deductive reasoning: A functional MRI study. Brain Research: Cognitive Brain Research 13(2):203–12.Google Scholar
Kroger, J. K., Sabb, F. W., Fales, C. L., Bookheimer, S. Y., Cohen, M. S. & Holyoak, K. J. (2002) Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: A parametric study of relational complexity. Cerebral Cortex 12(5):477–85.Google Scholar
Kyllonen, P. C. & Christal, R. E. (1990) Reasoning ability is (little more than) working-memory capacity. Intelligence 14(4):389433.Google Scholar
Lah, S. (2004) Neuropsychological outcome following focal cortical removal for intractable epilepsy in children. Epilepsy and Behavior 5(6):804–17.Google Scholar
Larson, G. E., Haier, R. J., LaCasse, L. & Hazen, K. (1995) Evaluation of a “mental effort” hypothesis for correlations between cortical metabolism and intelligence. Intelligence 21(3):267–78.Google Scholar
Lashley, K. S. (1929) Brain mechanisms and intelligence. University of Chicago Press.Google Scholar
Lassen, N. A., Hoedt-Rasmussen, K., Lindbjerg, I., Pedersen, F. & Munck, O. (1963a) Muscle blood flow determined by use of xenon 133. Scandinavian Journal of Clinical and Laboratory Investigation 15:SUPPL 76:61.Google Scholar
Lassen, N. A., Hoedt-Rasmussen, K., Sorensen, S. C., Skinhoj, E., Cronquist, S., Bodforss, B. & Ingvar, D. H. (1963b) Regional cerebral blood flow in man determined by krypton. Neurology 13:719–27.Google Scholar
Lee, J. Y., Lyoo, I. K., Kim, S. U., Jang, H. S., Lee, D. W., Jeon, H. J., Park, S. C. & Cho, M. J. (2005) Intellect declines in healthy elderly subjects and cerebellum. Psychiatry and Clinical Neurosciences 59(1):4551.Google Scholar
Lee, K. H., Choi, Y. Y., Gray, J. R., Cho, S. H., Chae, J. H., Lee, S. & Kim, K. (2006) Neural correlates of superior intelligence: Stronger recruitment of posterior parietal cortex. NeuroImage 29(2):578–86.Google Scholar
Lewis, D. V., Thompson, R. J. & Santos, C. C. (1996) Outcome of temporal lobectomy in adolescents. Journal of Epilepsy 9:198205.Google Scholar
Lindenberger, U., Mayr, U. & Kliegl, R. (1993) Speed and intelligence in old age. Psychology and Aging 8(2):207–20.Google Scholar
Logothetis, N. K. & Wandell, B. A. (2004) Interpreting the BOLD signal. Annual Review of Physiology 66:735–69.Google Scholar
Luo, Q., Perry, C., Peng, D., Jin, Z., Xu, D., Ding, G. & Xu, S. (2003) The neural substrate of analogical reasoning: An fMRI study. Brain Research: Cognitive Brain Research 17(3):527–34.Google Scholar
Luria, A. R. (1963) Restoration of function after brain injury. Pergamon Press.Google Scholar
Luria, A. R. (1973) Higher cortical functioning in man. Basic Books.Google Scholar
Marino, L. (2002) Convergence in complex cognitive abilities in cetaceans and primates. Brain Behavior and Evolution 59:2132.Google Scholar
Mathews, M. A. (1968) The electron microscopic study of the relationship between axon diameter and the initiation of myelin production in the peripheral nervous system. Anatomical Record 161(3): 337–45.Google Scholar
McDaniel, M. A. (2005) Big-brained people are smarter: A meta-analysis of the relationship between in vivo brain volume and intelligence. Intelligence 33:337–46.Google Scholar
Mekel-Bobrov, N., Gilbert, S. L., Evans, P. D., Vallender, E. J., Anderson, J. R., Hudson, R. R., Tishkoff, S. A. & Lahn, B. T. (2005) Ongoing adaptive evolution of ASPM, a brain size determinant in Homo sapiens. Science 309(5741):1720–22.Google Scholar
Miller, E. M. (1994) Intelligence and brain myelination – A hypothesis. Personality and Individual Differences 17(6):803–32.Google Scholar
Miranda, C. & Smith, M. L. (2001) Predictors of intelligence after temporal lobectomy in children with epilepsy. Epilepsy and Behavior 2(1):1319.Google Scholar
Mozley, L. H., Gur, R. C., Mozley, P. D. & Gur, R. E. (2001) Striatal dopamine transporters and cognitive functioning in healthy men and women. American Journal of Psychiatry 158(9):1492–99.Google Scholar
Naghavi, H. R. & Nyberg, L. (2005) Common fronto-parietal activity in attention, memory, and consciousness: Shared demands on integration? Consciousness and Cognition 14(2):390425.Google Scholar
Neisser, U., Boodoo, G., Bouchard, T. J., Boykin, A. W., Brody, N., Ceci, S. J., Halpern, D. F., Loehlin, J. C., Perloff, R., Sternberg, R. J. & Urbina, S. (1996) Intelligence: Knowns and unknowns. American Psychologist 51(2):77101.Google Scholar
Neubauer, A. C. & Fink, A. (2003) Fluid intelligence and neural efficiency: Effects of task complexity and sex. Personality and Individual Differences 35(4):811–27.Google Scholar
Neubauer, A. C., Fink, A. & Schrausser, D. G. (2002) Intelligence and neural efficiency: The influence of task content and sex on the brain-IQ relationship. Intelligence 30(6):515–36.Google Scholar
Neubauer, A. C., Grabner, R. H., Freudenthaler, H. H., Beckmann, J. F. & Guthke, J. (2004) Intelligence and individual differences in becoming neurally efficient. ACTA Psychologica (Amsterdam) 116(1):5574.Google Scholar
Newcombe, F. (1969) Missile wounds of the brain. Oxford University Press.Google Scholar
Noveck, I. A., Goel, V. & Smith, K. W. (2004) The neural basis of conditional reasoning with arbitrary content. Cortex 40(4–5):613–22.Google Scholar
Nyborg, H. (2005) Sex-related differences in general intelligence g, brain size, and social status. Personality and Individual Differences 39(3):497509.Google Scholar
O'Boyle, M. W., Cunnington, R., Silk, T. J., Vaughan, D., Jackson, G., Syngeniotis, A. & Egan, G. F. (2005) Mathematically gifted male adolescents activate a unique brain network during mental rotation. Brain Research: Cognitive Brain Research 25(2):583–87.Google Scholar
Parks, R. W., Loewenstein, D. A., Dodrill, K. L., Barker, W. W., Yoshii, F., Chang, J. Y., Emran, A., Apicella, A., Sheramata, W. A. & Duara, R. (1988) Cerebral metabolic effects of a verbal fluency test: A PET scan study. Journal of Clinical and Experimental Neuropsychology 10(5):565–75.Google Scholar
Paus, T., Zijdenbos, A., Worsley, K., Collins, D. L., Blumenthal, J., Giedd, J. N., Rapoport, J. L. & Evans, A. C. (1999) Structural maturation of neural pathways in children and adolescents: In vivo study. Science 283(5409):1908–11.Google Scholar
Pavlov, I. P. (1949) Complete collected works. Moscow, Izd. AU SSSR.Google Scholar
Pennington, B. F., Filipek, P. A., Lefly, D., Chhabildas, N., Kennedy, D. N., Simon, J. H., Filley, C. M., Galaburda, A. & DeFries, J. C. (2000) A twin MRI study of size variations in human brain. Journal of Cognitive Neuroscience 12(1):223–32.Google Scholar
Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M. & Raichle, M. E. (1988) Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331(6157):585–89.Google Scholar
Pfleiderer, B., Ohrmann, P., Suslow, T., Wolgast, M., Gerlach, A. L., Heindel, W. & Michael, N. (2004) N-acetylaspartate levels of left frontal cortex are associated with verbal intelligence in women but not in men: A proton magnetic resonance spectroscopy study. Neuroscience 123(4):1053–58.Google Scholar
Piercy, M. & Smyth, V. O. (1962) Right hemisphere dominance for certain non verbal intellectual skills. Brain 85:775–90.Google Scholar
Poppelreuter, W. (1917) Die psychischen Schädigungen durch Kopfschuss im Kriege 1914–1916: Die Störungen der niederen und hoheren Sehleistungen durch Verletzungen des Okzipitalhirns. Voss.Google Scholar
Porteus, S. D. (1944) Medical applications of maze test (in prefrontal lobotomy). Medical Journal of Australia 31:558–60.Google Scholar
Porteus, S. D. & Kepner, R. D. (1944) Mental changes after bilateral prefrontal lobotomy. Genetic Psychology Monographs 29:4115.Google Scholar
Posthuma, D., De Geus, E. J., Baare, W. F., Hulshoff Pol, H. E., Kahn, R. S. & Boomsma, D. I. (2002) The association between brain volume and intelligence is of genetic origin. Nature Neuroscience 5(2):8384.Google Scholar
Prabhakaran, V., Smith, J. A., Desmond, J. E., Glover, G. H. & Gabrieli, J. D. (1997) Neural substrates of fluid reasoning: An fMRI study of neocortical activation during performance of the Raven's Progressive Matrices test. Cognitive Psychology 33(1):4363.Google Scholar
Rae, C., Scott, R. B., Lee, M., Simpson, J. M., Hines, N., Paul, C., Anderson, M., Karmiloff-Smith, A., Styles, P. & Radda, G. K. (2003b) Brain bioenergetics and cognitive ability. Developmental Neuroscience 25(5): 324–31.Google Scholar
Rae, C., Scott, R. B., Thompson, C. H., Kemp, G. J., Dumughn, I., Styles, P., Tracey, I. & Radda, G. K. (1996) Is pH a biochemical marker of IQ? Proceedings of the Royal Society of London; Series B; Biological Sciences 263(1373):1061–64.Google Scholar
Reiss, A. L., Abrams, M. T., Singer, H. S., Ross, J. L. & Denckla, M. B. (1996) Brain development, gender and IQ in children – A volumetric imaging study. Brain 119:1763–74.Google Scholar
Risberg, J., Ancri, D. & Ingvar, D. H. (1968) Regional cerebral blood volume changes related to blood flow variations. Scandinavian Journal of Clinical and Laboratory Investigation. Supplement 102:XI:C.Google Scholar
Risberg, J., Halsey, J. H., Wills, E. L. & Wilson, E. M. (1975) Hemispheric specialization in normal man studied by bilateral measurements of the regional cerebral blood flow. A study with the 133-Xe inhalation technique. Brain 98(3):511–24.Google Scholar
Ross, A. J. & Sachdev, P. S. (2004) Magnetic resonance spectroscopy in cognitive research. Brain Research Reviews 44(2–3):83102.Google Scholar
Roth, G. & Dicke, U. (2006) Evolution of the brain and intelligence. Trends in Cognitive Sciences 9(5):250–57.Google Scholar
Ruff, C. C., Knauff, M., Fangmeier, T. & Spreer, J. (2003) Reasoning and working memory: Common and distinct neuronal processes. Neuropsychologia 41(9):1241–53.Google Scholar
Salthouse, T. A. & Coon, V. E. (1993) Influence of task-specific processing speed on age differences in memory. Journal of Gerontology 48(5):P245–55.Google Scholar
Schenker, N. M., Desgouttes, A. M. & Semendeferi, K. (2005) Neural connectivity and cortical substrates of cognition in hominoids. Journal of Human Evolution 49(5):547–69.Google Scholar
Schmithorst, V. J. & Holland, S. K. (2006) Functional MRI evidence for disparate developmental processes underlying intelligence in boys and girls. NeuroImage 31(3):1366–79.Google Scholar
Schmithorst, V. J., Wilke, M., Dardzinski, B. J. & Holland, S. K. (2005) Cognitive functions correlate with white matter architecture in a normal pediatric population: A diffusion tensor MRI study. Human Brain Mapping 26(2):139–47.Google Scholar
Schoenemann, P. T., Budinger, T. F., Sarich, V. M. & Wang, W. S. (2000) Brain size does not predict general cognitive ability within families. Proceedings of the National Academy of Sciences USA 97(9):4932–37.Google Scholar
Schoenemann, P. T., Sheehan, M. J. & Glotzer, L. D. (2005) Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nature Neuroscience 8(2):242–52.Google Scholar
Semendeferi, K., Armstrong, E., Schleicher, A., Zilles, K. & Van Hoesen, G. W. (2001) Prefrontal cortex in humans and apes: A comparative study of area 10. American Journal of Physical Anthropology 114(3): 224–41.Google Scholar
Semendeferi, K., Lu, A., Schenker, N. & Damasio, H. (2002) Humans and great apes share a large frontal cortex. Nature Neuroscience 5(3):272–76.Google Scholar
Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., Evans, A., Rapoport, J. & Giedd, J. (2006) Intellectual ability and cortical development in children and adolescents. Nature 440(7084):676–79.Google Scholar
Silverman, P. H. (2004) Rethinking genetic determinism. The Scientist 18(10): 3233.Google Scholar
Sokoloff, L. (1981) Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose. Journal of Cerebral Blood Flow and Metabolism 1(1):736.Google Scholar
Spearman, C. (1904) General intelligence, objectively determined and measured. American Journal of Psychology 15:201–93.Google Scholar
Sternberg, R. J. (2000) Cognition. The holey grail of general intelligence. Science 289(5478):399401.Google Scholar
Strom-Olsen, R., Last, S. L., Brody, M. B. & Knight, G. C. (1943) Prefrontal leukotomy: Results in 30 cases of mental disorder, with observations on surgical technique. Journal of Mental Science 89:165–81.Google Scholar
Stuss, D. T., Benson, D. F., Kaplan, E. F., Weir, W. S., Naeser, M. A., Lieberman, I. & Ferrill, D. (1983) The involvement of orbitofrontal cerebrum in cognitive tasks. Neuropsychologia 21(3):235–48.Google Scholar
Suchy, Y. & Chelune, G. (2001) Postsurgical changes in self-reported mood and Composite IQ in a matched sample of patients with frontal and temporal lobe epilepsy. Journal of Clinical and Experimental Neuropsychology 23(4):413–23.Google Scholar
Testa, C., Laakso, M. P., Sabattoli, F., Rossi, R., Beltramello, A., Soininen, H. & Frisoni, G. B. (2004) A comparison between the accuracy of voxel-based morphometry and hippocampal volumetry in Alzheimer's disease. Journal of Magnetic Resonance Imaging 19(3):274–82.Google Scholar
Thoma, R. J., Yeo, R. A., Gangestad, S., Halgren, E., Davis, J., Paulson, K. M. & Lewine, J. D. (2006) Developmental instability and the neural dynamics of the speed-intelligence relationship. NeuroImage 32(3):1456–64.Google Scholar
Thompson, P. M., Cannon, T. D., Narr, K. L., van Erp, T., Poutanen, V.P., Huttunen, M., Lonnqvist, J., Standertskjold-Nordenstam, C. G., Kaprio, J., Khaledy, M., Dail, R., Zoumalan, C. I. & Toga, A. W. (2001) Genetic influences on brain structure. Nature Neuroscience 4(12):1253–58.Google Scholar
Thompson, R., Crinella, F. M. & Yu, J. (1990) Brain mechanisms in problem solving and intelligence: A lesion survey of the rat brain. Plenum.Google Scholar
Thorndike, E. L. (1921) Intelligence and its measurement: A symposium. Journal of Educational Psychology 12:124–27.Google Scholar
Toga, A. W. & Thompson, P. M. (2005) Genetics of brain structure and intelligence. Annual Review of Neuroscience 28:123.Google Scholar
Tramo, M. J. & Gazzaniga, M. S. (1999) Brain size, head size, and intelligence quotient in monozygotic twins – Reply from the authors. Neurology 53(1):243–44.Google Scholar
Tramo, M. J., Loftus, W. C., Thomas, C. E., Green, R. L., Mott, L. A. & Gazzaniga, M. S. (1995) Surface area of human cerebral cortex and its gross morphological subdivisions: In vivo measurements in monozygotic twins suggest differential hemisphere effects of genetic factors. Journal of Cognitive Neuroscience 7:292301.Google Scholar
Ungerleider, L. G. & Mishkin, M. (1982) Two cortical visual systems. In: Analysis of Visual Behavior, ed. Ingle, D. J., Goodale, M. A. & Mansfield, R. J. W., pp. 549589. MIT Press.Google Scholar
Urenjak, J., Williams, S. R., Gadian, D. G. & Noble, M. (1993) Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. Journal of Neuroscience 13(3):981–89.Google Scholar
Valenzuela, M. J., Sachdev, P. S., Wen, W., Shnier, R., Brodaty, H. & Gillies, D. (2000) Dual voxel proton magnetic resonance spectroscopy in the healthy elderly: Subcortical-frontal axonal N-acetylaspartate levels are correlated with fluid cognitive abilities independent of structural brain changes. NeuroImage 12(6):747–56.Google Scholar
Van Valen, L. (1974) Brain size and intelligence in man. American Journal of Physical Anthropology 40(3):417–23.Google Scholar
Wachi, M., Tomikawa, M., Fukuda, M., Kameyama, S., Kasahara, K., Sasagawa, M., Shirane, S., Kanazawa, O., Yoshino, M., Aoki, S. & Sohma, Y. (2001) Neuropsychological changes after surgical treatment for temporal lobe epilepsy. Epilepsia 42(Suppl. 6):48.Google Scholar
Weinstein, S. & Teuber, H. L. (1957) Effects of penetrating brain injury on intelligence test scores. Science 125:1036–37.Google Scholar
Wernicke, C. (1874) Der aphasische Symptomenkomplex: eine psychologische Studie auf anatomischer Basis. Breslau, Cohn and Weigert.Google Scholar
Westerveld, M., Sass, K. J., Chelune, G. J., Hermann, B. P., Barr, W. B., Loring, D. W., Strauss, E., Trenerry, M. R., Perrine, K. & Spencer, D. D. (2000) Temporal lobectomy in children: Cognitive outcome. Journal of Neurosurgery 92(1):2430.Google Scholar
Wharton, C. M., Grafman, J., Flitman, S. S., Hansen, E. K., Brauner, J., Marks, A. & Honda, M. (2000) Toward neuroanatomical models of analogy: A positron emission tomography study of analogical mapping. Cognitive Psychology 40(3):173–97.Google Scholar
Wilke, M., Sohn, J. H., Byars, A. W. & Holland, S. K. (2003) Bright spots: Correlations of gray matter volume with IQ in a normal pediatric population. NeuroImage 20(1):202–15.Google Scholar
Willerman, L., Schultz, R., Rutledge, J. N. & Bigler, E. D. (1991) In vivo brain size and intelligence. Intelligence 15(2):223–28.Google Scholar
Winterer, G. & Goldman, D. (2003) Genetics of human prefrontal function. Brain Research Reviews 43(1):134–63.Google Scholar
Witelson, S. F., Kigar, D. L. & Harvey, T. (1999) The exceptional brain of Albert Einstein. Lancet 353(9170):2149–53.Google Scholar
Wood, B. & Collard, M. (1999) The human genus. Science 284(5411):6571.Google Scholar
Yeo, R. A., Hill, D., Campbell, R., Vigil, J. & Brooks, W. M. (2000) Developmental instability and working memory ability in children: A magnetic resonance spectroscopy investigation. Developmental Neuropsychology 17(2):143–59.Google Scholar
Zhang, K. & Sejnowski, T. J. (2000) A universal scaling law between gray matter and white matter of cerebral cortex. Proceedings of the National Academy of Sciences USA 97:5621–26.Google Scholar