Hostname: page-component-797576ffbb-pxgks Total loading time: 0 Render date: 2023-12-02T12:25:26.523Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

P-FIT and the neuroscience of intelligence: How well does P fit?

Published online by Cambridge University Press:  26 July 2007

Vivek Prabhakaran
Departments of Neuroradiology, Neurology and Radiology, Johns Hopkins Hospital, Baltimore, MD 21287vprabha1@jhmi.edu
Bart Rypma
School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080. bart.rypma@utdallas.edu


A well-recognized framework for modeling human intelligence centers around Spearman's g, a common central factor accounting for individual differences in cognitive performance across a variety of complex tasks (Spearman 1904). The neural basis of g may be better characterized by posterior-frontal integration, rather than parietal, which may be just one of many posterior regions that are controlled by the prefrontal cortex (PFC).

Open Peer Commentary
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Christoff, K., Prabhakaran, V., Dorfman, J., Zhao, Z., Kroger, J. K., Holyoak, K. J. & Gabrieli, J. D. (2001) Rostrolateral prefrontal cortex involvement in relational integration during reasoning. NeuroImage 14(5):1136–49.Google Scholar
D'Esposito, M., Detre, J. A., Alsop, D. C., Shin, R. K., Atlas, S. & Grossman, M. (1995) The neural basis of the central executive system of working memory. Nature 378(6554):279–81.Google Scholar
Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A., Newell, F. N. & Emslie, H. (2000) A neural basis for general intelligence. Science 289(5478):457–60.Google Scholar
Prabhakaran, V., Narayanan, K., Zhao, Z. & Gabrieli, J. D. (2000) Integration of diverse information in working memory within the frontal lobe. Nature Neuroscience 3(1):8590.Google Scholar
Prabhakaran, V., Raman, S. P., Grunwald, M. R., Mahadevia, A., Hussain, N., Lu, H., Van Zijl, P. C. & Hillis, A. E. (2007) Neural substrates of word generation during stroke recovery: The influence of cortical hypoperfusion. Behavioural Neurology 18(1):4552.Google Scholar
Prabhakaran, V., Rypma, B. & Gabrieli, J. D. (2001) Neural substrates of mathematical reasoning: A functional magnetic resonance imaging study of neocortical activation during performance of the necessary arithmetic operations test. Neuropsychology 15(1):115–27.Google Scholar
Prabhakaran, V., Smith, J. A., Desmond, J. E., Glover, G. H. & Gabrieli, J. D. (1997) Neural substrates of fluid reasoning: An fMRI study of neocortical activation during performance of the Raven's Progressive Matrices test. Cognitive Psychology 33(1):4363.Google Scholar
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A. & Shulman, G. L. (2001) A default mode of brain function. Proceedings of the National Academy of Sciences USA 98:676–82.Google Scholar
Rypma, B., Berger, J. S., Prabhakaran, V., Bly, B. M., Kimberg, D. Y., Biswal, B. B. & D'Esposito, M. (2006) Neural correlates of cognitive efficiency. NeuroImage 33(3):969–79.Google Scholar
Schneider, W. & Shiffrin, R. M. (1977) Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review 84:166.Google Scholar
Shallice, T. (1988) From neuropsychology to mental structure. Cambridge University Press.Google Scholar
Spearman, C. (1904) General intelligence, objectively determined and measured. American Journal of Psychology 15:201–93.Google Scholar
Vincent, J. L., Snyder, A. Z., Fox, M. D., Shannon, B. J., Andrews, J. R., Raichle, M. E. & Buckner, R. L. (2006) Coherent spontaneous activity identifies a hippocampal-parietal memory network. Journal of Neurophysiology 96:3517–31.Google Scholar