Skip to main content Accessibility help
Hostname: page-component-55597f9d44-pgkvd Total loading time: 0.604 Render date: 2022-08-12T10:37:00.787Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Précis of Neuroconstructivism: How the Brain Constructs Cognition

Published online by Cambridge University Press:  26 June 2008

Sylvain Sirois
School of Psychological Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, United
Michael Spratling
Division of Engineering, King's College London, Strand, London WC2R 2LS, United Kingdom Centre for Brain and Cognitive Development, School of Psychology, Birkbeck University of London, Malet Street, London WC1E 7HX, United
Michael S. C. Thomas
Centre for Brain and Cognitive Development, School of Psychology, Birkbeck University of London, Malet Street, London WC1E 7HX, United
Gert Westermann
Department of Psychology, Oxford Brookes University, Oxford OX3 0BPUnited Kingdom Centre for Brain and Cognitive Development, School of Psychology, Birkbeck University of London, Malet Street, London WC1E 7HX, United
Denis Mareschal
Centre for Brain and Cognitive Development, School of Psychology, Birkbeck University of London, Malet Street, London WC1E 7HX, United
Mark H. Johnson
Centre for Brain and Cognitive Development, School of Psychology, Birkbeck University of London, Malet Street, London WC1E 7HX, United


Neuroconstructivism: How the Brain Constructs Cognition proposes a unifying framework for the study of cognitive development that brings together (1) constructivism (which views development as the progressive elaboration of increasingly complex structures), (2) cognitive neuroscience (which aims to understand the neural mechanisms underlying behavior), and (3) computational modeling (which proposes formal and explicit specifications of information processing). The guiding principle of our approach is context dependence, within and (in contrast to Marr [1982]) between levels of organization. We propose that three mechanisms guide the emergence of representations: competition, cooperation, and chronotopy; which themselves allow for two central processes: proactivity and progressive specialization. We suggest that the main outcome of development is partial representations, distributed across distinct functional circuits. This framework is derived by examining development at the level of single neurons, brain systems, and whole organisms. We use the terms encellment, embrainment, and embodiment to describe the higher-level contextual influences that act at each of these levels of organization. To illustrate these mechanisms in operation we provide case studies in early visual perception, infant habituation, phonological development, and object representations in infancy. Three further case studies are concerned with interactions between levels of explanation: social development, atypical development and within that, developmental dyslexia. We conclude that cognitive development arises from a dynamic, contextual change in embodied neural structures leading to partial representations across multiple brain regions and timescales, in response to proactively specified physical and social environment.

Main Articles
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Adolphs, R. (2003) Cognitive Neuroscience of Human Social Behavior. Nature Reviews Neuroscience 4:165–78.CrossRefGoogle Scholar
Armstrong, R. C. & Montminy, M. R. (1993) Transsynaptic control of gene expression. Annual Review Neuroscience 16:1729.CrossRefGoogle ScholarPubMed
Ballard, D. H., Hayhoe, M. M., Pook, P. K. & Rao, R. P. N. (1997) Deictic codes for the embodiment of cognition. Behavioral and Brain Sciences 20:723–67.CrossRefGoogle ScholarPubMed
Bandura, A. (1986) The social foundations of thought and action. Prentice-Hall.Google Scholar
Baron-Cohen, S. (1999) Does the study of autism justify minimalist innate modularity? Learning and Individual Differences 10:179–91.CrossRefGoogle Scholar
Baron-Cohen, S., Tager-Flusberg, H. & Cohen, H. J., eds. (1993) Understanding other minds: Perspectives from autism. Oxford University Press.Google Scholar
Becker, L. E., Armstrong, D. L. & Chan, F. (1986) Dendritic atrophy in children with Down's syndrome. Annals of Neurology 20:520–26.CrossRefGoogle ScholarPubMed
Berk, L. & Gavin, R. (1984) Development of private speech among low-income Appalachian children. Developmental Psychology 20:271–86.CrossRefGoogle Scholar
Bogartz, R. S., Shinskey, J. L. & Speaker, C. J. (1997) Interpreting infant looking: The event set x event set design. Developmental Psychology 33:408–22.CrossRefGoogle ScholarPubMed
Boysson-Bardies, B., Halle, P., Sagart, L. & Durand, C. (1989) A cross-linguistic investigation of vowel formants in babbling. Journal of Child Language 16:117.CrossRefGoogle Scholar
Campos, J. J., Anderson, D. I., Barbu-Roth, M. A., Hubbard, E. M., Hertenstein, M. J. & Witherington, D. (2000) Travel broadens the mind. Infancy 1:149219.CrossRefGoogle Scholar
Cashon, C. H. & Cohen, L. B. (2000) Eight-month-old infants' perceptions of possible and impossible events. Infancy 1:429–46.CrossRefGoogle Scholar
Castles, A. & Coltheart, M. (1993) Varieties of developmental dyslexia. Cognition 47:149–80.CrossRefGoogle ScholarPubMed
Chugani, D. C., Muzik, O., Behen, M., Rothermel, R., Janissee, J. J., Lee, J. & Chugani, H. T. (1999) Developmental changes in serotonin synthesis capacity in autistic and non-autistic children. Annals of Neurology 45:287–95.3.0.CO;2-9>CrossRefGoogle Scholar
Clark, A. (1997) Being There. MIT Press.Google Scholar
Clark, A. & Thornton, C. (1997) Trading spaces: Computation, representation and the limits of uninformed learning. Behavioral and Brain Sciences 20:5766.CrossRefGoogle ScholarPubMed
Clifton, R. K. & Nelson, M. N. (1976) Developmental study of habituation in infants: The importance of paradigm, response system, and state. In: Habituation: Perspectives from child development, animal behavior and neurophysiology, ed. Tighe, T. J. & Leaton, R. N., pp. 159205. Erlbaum.Google Scholar
Cohen, L. B. (1972) Attention-getting and attention-holding process of infant visual preferences. Child Development 43:869–79.CrossRefGoogle Scholar
Cohen, L. B. & Cashon, C. H. (2003) Infant perception and cognition. In: Handbook of psychology: Developmental psychology, vol. 6, ed. Lerner, R., Easterbrooks, A. & Mistry, J., pp. 6589. Wiley.Google Scholar
Cohen, L. B. & Marks, K. S. (2002) How infants process addition and subtraction events. Developmental Science 5:186201.CrossRefGoogle Scholar
Crowley, J. C. & Katz, L. C. (1999) Development of ocular dominance columns in the absence of retinal input. Nature Neuroscience 2:1125–30.CrossRefGoogle ScholarPubMed
Csibra, G. & Gergely, G. (2006) Social learning and social cogniton: The case for pedagogy. In: Processes of Change in Brain and Cognitive Development. Attention and Performance XXI, ed. Johnson, M. H. & Munakata, Y.. Oxford University Press.Google Scholar
Dehaene, S. (2003). Natural born readers. New Scientist, 5th July 2003, no. 2402, 3033.Google Scholar
Dehaene, S., Le Clec', H., Poline, J-P., Le Bihan, D. & Cohen, L. (2002) The visual word form area: A prelexical representation of visual words in the fusiform gyrus. NeuroReport 13:321–25.CrossRefGoogle ScholarPubMed
Deruelle, C., Mancini, J., Livet, M. O., Casse-Perrot, C. & de Schonen, S. (1999) Configural and local processing of faces in children with Williams syndrome. Brain and Cognition 41:276–98.CrossRefGoogle ScholarPubMed
Desimone, R. (1996) Neural mechanisms for visual memory and their role in attention. Proceedings of the National Academy of Sciences USA 93:13494–99.CrossRefGoogle ScholarPubMed
Desimone, R. & Duncan, J. (1995) Neural mechanisms of selective visual attention. Annual Review of Neuroscience 18:193222.CrossRefGoogle ScholarPubMed
Diamond, A. (1991) Frontal lobe involvement in cognitive changes during the first year of life. In: Brain maturation and cognitive development: A comparative and cross-cultural perspective, ed. Gibson, K. R. & Petersen, A. C., pp. 127–80. Aldine de Gruyter.Google Scholar
Driver, J., Davis, G., Russell, C., Turatto, M. & Freeman, E. (2001) Segmentation, attention and phenomenal visual objects. Cognition 80:6195.CrossRefGoogle ScholarPubMed
Eimas, P. D., Siqueland, E. R., Jusczyk, P. & Vigorito, J. (1971) Speech perception in infants. Science 171:303306.CrossRefGoogle ScholarPubMed
Elman, J., Bates, E., Johnson, M. H., Karmiloff-Smith, A., Parisi, D. & Plunkett, K. (1996) Rethinking innateness: A connectionist perspective on development. MIT Press.Google Scholar
Fantz, R. L. (1964) Visual experience in infants: Decreased attention to familiar patterns relative to novel ones. Science 146:668–70.CrossRefGoogle ScholarPubMed
Farroni, T., Csibra, G., Simion, F. & Johnson, M. H. (2002) Eye contact detection in humans from birth. Proceedings of the National Academy of Sciences 99:9602–605.CrossRefGoogle ScholarPubMed
Felleman, D. J. & Van Essen, D. C. (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1:147.CrossRefGoogle ScholarPubMed
Fodor, J. A. (1975) The language of thought. Harvard University Press.Google Scholar
Fodor, J. A. & Pylyshyn, Z. (1988) Connectionism and cognitive architecture: A critique. Cognition 28:371.CrossRefGoogle Scholar
Foldiak, P. (199l) Learning invariance from transformation sequences. Neural Computation 3:194200.CrossRefGoogle Scholar
Ghosh, A., Carnahan, J. & Greenberg, M. E. (1994) Requirement for BDNF in activity-dependent survival of cortical neurons. Science 263:1618–23.CrossRefGoogle ScholarPubMed
Gibson, E. J. (1979) The ecological approach to visual perception. Houghton Miffin.Google Scholar
Gibson, E. J. (1982) The concept of affordances in development: The renascence of functionalism. In: The concept of development. The Minnesota Symposia On Child Psychology, ed. Collins, W. A., pp. 5582. Erlbaum.Google Scholar
Goldfield, E. C., Kay, B. & Warren, W. (1993) Infant bouncing: The assembly and tuning of an action system. Child Development 64:1128–42.CrossRefGoogle Scholar
Goldstein, D. G. & Gigerenzer, G. (2002) Models of ecological rationality: The recognition heuristic. Psychological Review 109:7590.CrossRefGoogle ScholarPubMed
Goodman, C. S. & Shatz, C. J. (1993) Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72:7798.CrossRefGoogle ScholarPubMed
Goswami, U. (2002) Phonology, reading development and dyslexia: A cross-linguistic perspective. Annals of Dyslexia 52:123.CrossRefGoogle Scholar
Goswami, U. (2003) Phonology, learning to read and dyslexia: A cross-linguistic analysis. In: Dyslexia: Different brain, different behavior, ed. Csepe, V., pp. 140. Kluwer Academic.Google Scholar
Gottlieb, G. (2007) Probabilistic epigenisis. Developmental Science 10:111.CrossRefGoogle Scholar
Grice, S., Spratling, M. W., Karmiloff-Smith, A., Halit, H., Csibra, G., de Haan, M., & Johnson, M. H. (2001) Disorders visual processing and oscillatory brain activity in autism and Williams syndrome. NeuroReport 12:2697–700.CrossRefGoogle ScholarPubMed
Harm, M. W. & Seidenberg, M. S. (2004) Computing the meaning of words in reading: Cooperative division of labor between visual and phonological processes. Psychological Review 111:662720.CrossRefGoogle Scholar
Herrmann, K. & Shatz, C. J. (1995) Blockade of action potential activity alters initial arborization of thalamic axons within layer 4. Proceedings of the National Academy of Sciences 92:11244–48.CrossRefGoogle ScholarPubMed
Hubel, D. H. & Wiesel, T. N. (1963) Shape and arrangement of columns in cat's striate cortex. Journal of Physiology 165:559–68.CrossRefGoogle ScholarPubMed
Humphreys, G. W. & Riddoch, M. (2003) From what to where. Psychological Science 14:487–92.CrossRefGoogle ScholarPubMed
Hutchins, E. (1995) Cognition in the wild. MIT Press.Google Scholar
Jakobson, R. (1941) Child language, aphasia and phonological universals. Mouton. (English translation by Keiler, A. R., 1968.)Google Scholar
Johnson, M. H. (2004) Plasticity and functional brain development: The case of face processing. In: Attention & Performance XX: Functional neuroimaging of visual cognition, ed. Kanwisher, N. & Duncan, J., pp. 257–63: Oxford University Press.Google Scholar
Johnson, M. H. (2005) Developmental cognitive neuroscience, 2nd edition. Blackwell.Google Scholar
Johnson, M. H., Dziurawiec, S., Ellis, H. D. & Morton, J. (1991) Newborns preferential tracking of face-like stimuli and its subsequent decline. Cognition 40:119.CrossRefGoogle ScholarPubMed
Johnson, M. H. & Morton, J. (1991) Biology and Cognitive Development: The Case of Face Recognition. Blackwell.Google Scholar
Johnson, M. H. & Munakata, Y. (2005) Processes of change in brain and cognitive development. Trends in Cognitive Sciences 9:152–58.CrossRefGoogle ScholarPubMed
Johnson, M. H. & Vecera, S. P. (1996) Cortical differentiation and neurocognitive development: The parcellation conjecture. Behavioural Processes 36:195212.CrossRefGoogle ScholarPubMed
Kaldy, Z. & Sigala, N. (2004) The neural mechanisms of object working memory: What is where in the infant brain? Neuroscience and Biobehavioural Reviews 28:113–21.CrossRefGoogle ScholarPubMed
Karmiloff-Smith, A. (1992) Beyond modularity: A developmental perspective on cognitive science. MIT Press.Google Scholar
Karmiloff-Smith, A. (1998a) Development itself is the key to understanding developmental disorders. Trends in Cognitive Sciences 2:389–98.CrossRefGoogle ScholarPubMed
Karmiloff-Smith, A., Thomas, M. S. C., Annaz, D., Humphreys, K., Ewing, S., Grice, S., Brace, N., Van Duuren, M., Pike, G., & Campbell, R. (2004) Exploring the Williams syndrome face processing debate: The importance of building developmental trajectories. Journal of Child Psychology and Psychiatry and Allied Disciplines 45:1258–74.CrossRefGoogle ScholarPubMed
Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R. & Ungerleider, L. G. (1995) Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377:155–58.Google ScholarPubMed
Kaufmann, W. E. & Moser, H. W. (2000) Dendritic anomalies in disorders associated with mental retardation. Cerebral Cortex 10:981–91.CrossRefGoogle ScholarPubMed
Koopmans-van Beinum, F. J., Clement, C. J. & van den Dikkenberg-Pot, I. (2001) Babbling and the lack of auditory speech perception: A matter of coordination? Developmental Science 4:6170.CrossRefGoogle Scholar
Lamme, V. A. F. & Roelfsema, P. R. (2000) The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosciences 23:571–79.CrossRefGoogle ScholarPubMed
Lenneberg, E. (1967) Biological foundations of language. Wiley.Google ScholarPubMed
Leslie, A., Xu, F., Tremoulet, P. & Scholl, B. (1998) Indexing and the object concept: “What” and “where” systems in infancy. Trends in Cognitive Sciences 2:1018.CrossRefGoogle Scholar
Liu, H.-M., Kuhl, P. & Tsao, F.-M. (2003) An association between mothers' speech clarity and infants' speech discrimination skills. Developmental Science 6:F1F10.CrossRefGoogle Scholar
Manis, F. R., Seidenberg, M. S., Doi, L. M., McBride-Chang, C. & Petersen, A. (1996) On the bases of two subtypes of developmental dyslexia. Cognition 58:157–95.CrossRefGoogle Scholar
Mareschal, D. & Bremner, A. J. (2005) When do 4-month-olds remember the “what” and “where” of hidden objects? In: Attention & performance XXI: Processes of change in brain and cognitive development, ed. Johnson, M. H. & Munakata, Y., pp. 427–47. Oxford University Press.Google Scholar
Mareschal, D. & Johnson, M. H. (2003) The “what” and “where” of infant object representations. Cognition 88:259–76.CrossRefGoogle Scholar
Mareschal, D., Johnson, M. H., Sirois, S., Spratling, M., Thomas, M. & Westermann, G. (2007a) Neuroconstructivism, vol. I: How the brain constructs cognition. Oxford University Press.CrossRefGoogle Scholar
Mareschal, D., Sirois, S., Westermann, G. & Johnson, M. H. (2007b) Neuroconstructivism, vol. II: Perspectives and prospects. Oxford University Press.CrossRefGoogle Scholar
Mareschal, D., Plunkett, K. & Harris, P. (1999) A computational and neuropsychological account of object-oriented behaviours in infancy. Developmental Science 2:306–17.CrossRefGoogle Scholar
Mareschal, D. & Shultz, T. R. (1996) Generative connectionist architectures and constructivist cognitive development. Cognitive Development 11:571605.CrossRefGoogle Scholar
Maris, M. & te Boekhorst, R. (1996) Exploiting physical constraints: heap formation through behavioural error in a group of robots. In: Proceedings of the IROS ‘96, IEEE/RSJ International Conference on Intelligent Robots and Systems. November 4–8, Osaka, Japan.Google Scholar
Marr, D. (1982) Vision. W. Freeman.Google ScholarPubMed
McCall, R. B., Kennedy, C. B. & Applebaum, M. I. (1977) Magnitude of discrepancy and the distribution of attention in infants. Child Development 48:772–86.CrossRefGoogle Scholar
McCandliss, B. D., Cohen, L. & Dehaene, S. (2003) The visual word form area: Expertise for reading in the fusiform gyrus. Trends in Cognitive Sciences 7:293–99.CrossRefGoogle ScholarPubMed
McClelland, J. L., Fieza, J. A. & McCandliss, B. D. (2002) Teaching the /r/-/l/ discrimination to Japanese adults: Behavioral and neural aspects. Physiology & Behavior 77:657–62.CrossRefGoogle ScholarPubMed
Merigan, W. H. & Maunsell, J. H. R. (1993) How parallel are the primate visual pathways. Annual Review of Neuroscience 16:369402.CrossRefGoogle ScholarPubMed
Morton, J. & Johnson, M. H. (1991) CONSPEC and CONLERN: A two-process theory of infant face recognition. Psychological Review 98:164–81.CrossRefGoogle ScholarPubMed
Nelson, C. A. (1995) The ontogeny of human memory: A cognitive neuroscience perspective. Developmental Psychology 31:723–38.CrossRefGoogle Scholar
Neville, H. J. & Lawson, D. (1987) Attention to central and peripheral visual space in a movement detection task: An event-related potential and behavioral study. II. Congenitally deaf adults. Brain Research 405:268–83.CrossRefGoogle Scholar
O'Leary, D. D. M. & Stanfield, B. B. (1989) Selective elimination of axons extended by developing cortical neurons is dependent on regional locale: Experiments utilizing fetal cortical transplants. Journal of Neuroscience 9:2230–46.Google ScholarPubMed
Oliver, A., Johnson, M. H., Karmiloff-Smith, A. & Pennington, B. (2000) Deviations in the emergence of representations: A neuroconstructivist framework for analysing developmental disorders. Developmental Science 3:123.CrossRefGoogle Scholar
Oller, D. K. & Eilers, R. E. (1988) The role of audition in infant babbling. Child Development 59:441–49.CrossRefGoogle ScholarPubMed
Oppenheim, R. W. (1991) Cell death during development of the nervous system. Annual Review Neuroscience 14:453501.CrossRefGoogle Scholar
Paterson, S. J., Brown, J. H., Gsödl, M. K., Johnson, M. H. & Karmiloff-Smith, A. (1999) Cognitive modularity and genetic disorders. Science 286:2355–58.CrossRefGoogle ScholarPubMed
Pennington, B. F. (1999) Dyslexia as a neurodevelopmental disorder. In: Neurodevelopmental disorders, ed. Tager-Flusberg, H., pp. 307–30. MIT Press.Google Scholar
Petersen, S. E., Van Mier, H., Fiez, J. A., & Raichle, M. E. (1998) The effects of practice on the functional anatomy of task performance. Proceedings of the National Academy of Sciences USA 95:853–60.CrossRefGoogle ScholarPubMed
Piaget, J. (1952) The origins of intelligence in the child. International Universities Press.CrossRefGoogle Scholar
Piaget, J. (1970) Genetic epistemology. Columbia University Press.Google Scholar
Plaut, D. C., McClelland, J. L., Seidenberg, M. S. & Patterson, K. (1996) Understanding normal and impaired word reading: Computational principles in quasi-regular domains. Psychological Review 103:56115.CrossRefGoogle ScholarPubMed
Plomin, R. & Dale, P. S. (2000) Genetics and early language development: A U. K. study of twins. In: Speech and language impairments in children: Causes, characteristics, intervention and outcome, ed. Bishop, D. V. M. & Leonard, L. B., pp. 3551. Psychology Press.Google Scholar
Plomin, R. & Rutter, M. (1998) Child development, molecular genetics, and what to do with genes once they are found. Child Development 69:1221–40.CrossRefGoogle Scholar
Posner, M. I. (1993) Attention before and during the decade of the brain. In: Synergies in experimental psychology, artificial intelligence, and cognitive neuroscience: vol. XIV, Attention and performance, ed. Meyers, D. & Kornblum, S., pp. 343–50. MIT Press.Google Scholar
Posner, M. I., Petersen, S. E., Fox, P. T. & Raichle, M. E. (1988) Localization of cognitive functions in the human brain. Science 240:1627–31.CrossRefGoogle ScholarPubMed
Prechtl, H. F. R. (2001) Prenatal and early postnatal development of human motor behaviour. In: Handbook of brain and behaviour in human development, ed. Kalverboer, A. F. & Gramsbergen, A., pp. 415–27. Kluwer Academic Press.Google Scholar
Puce, A., Allison, T., Bentin, S., Gore, J. C. & McCarthy, G. (1998) Temporal cortex activation in humans viewing eye and mouth movements. Journal of Neuroscience 18:2188–99.Google ScholarPubMed
Purves, D., Augustine, G. J., Fitzpatrick, D., Katz, L. C., LaMantia, A. S. & McNamara, J. O. (1997) Neuroscience. Sinauer.Google Scholar
Quartz, S. R. & Sejnowski, T. J. (1997) The neural basis of cognitive development: A constructivist manifesto. Behavioral and Brain Sciences 20:537–56.CrossRefGoogle ScholarPubMed
Quinlan, P. T. (1988) Structural change and development in real and artificial neural networks. Neural Network 11:577–99.CrossRefGoogle ScholarPubMed
Rainer, G. & Miller, E. K. (2000) Effects of visual experience on the representation of objects in the prefrontal cortex. Neuron 27:179–89.CrossRefGoogle ScholarPubMed
Rakic, P. (1988) Specification of cerebral cortical areas. Science 241:170–76.CrossRefGoogle ScholarPubMed
Rao, S. C., Rainer, G. & Miller, E. (1997) Integration of “what” and “where” in the primate prefrontal cortex. Science 276:821–24.CrossRefGoogle Scholar
Robertson, S. S. (1988) Mechanism and function of cyclicity in spontaneous movement. In: Behavior of the fetus, ed. Smotherman, W. P. & Robinson, S. R., pp. 7794. Telford.Google Scholar
Robertson, S. S., Bacher, L. F. & Huntington, N. J. (2001) The integration of body movement and attention in young infants. Psychological Science 12:523–26.CrossRefGoogle ScholarPubMed
Robertson, S. S., Guckenheimer, J., Masnick, A. M. & Bacher, L. F. (2004) The dynamics of infant visual foraging. Developmental Science 7:194200.CrossRefGoogle ScholarPubMed
Rogoff, B. (1998) Cognition as a collaborative process. In: Handbook of child psychology: Cognition, perception and language, ed. Damon, W., pp. 679744. Wiley.Google Scholar
Rogoff, B. (1990) Apprenticeship in thinking, cognitive development in social contexts. Oxford University Press.Google Scholar
Rogoff, B. (2003) The cultural nature of human development. Oxford University Press.Google Scholar
Schlesinger, M. (2004) Evolving agents as a metaphor for the developing child. Developmental Science 7:154–68.CrossRefGoogle ScholarPubMed
Seidenberg, M. S. & McClelland, J. L. (1989) A distributed, developmental model of word recognition and naming. Psychological Review 96:523–68.CrossRefGoogle ScholarPubMed
Shaywitz, B. A. & Shaywitz, S. E. (1994) Learning disabilities and attention disorders. In: Principles of pediatric neurology, ed. Swaiman, K., pp. 1119–51. Mosby.Google Scholar
Sheridan, S. R. (1997) Drawing/Writing and the new literacy. Drawing/Writing Publications.Google Scholar
Shrager, J. & Johnson, M. H. (1996) Dynamic plasticity influences the emergence of function in a simple cortical array. Neural Networks 9:1119–29.CrossRefGoogle Scholar
Shultz, T. R. (2003) Computational developmental psychology. MIT Press.Google Scholar
Sieratzki, J. S. & Woll, B. (1998) Toddling into language: precocious language development in motor-impaired children with spinal muscular atrophy. In: Proceedings of the 22nd Annual Boston University Conference on Language Development, Volume 2, ed. Greenhill, A., Hughes, M., Littlefield, H. & Walsh, H., pp. 684–94. Cascadilla Press.Google Scholar
Simon, T. J., Hespos, S. J. & Rochat, P. (1995) Do infants understand simple arithmetic? A replication of Wynn (1992). Cognitive Development 10253–69.Google Scholar
Sirois, S. (2004) Autoassociator networks and insights into infancy. Developmental Science 7:133–40.CrossRefGoogle Scholar
Sirois, S. (2005) Hebbian motor control in a robot-embedded model of habituation, Proceedings of the International Joint Conference on Neural Networks (IJCNN 2005) 2772–77: IEEE.Google Scholar
Sirois, S. & Mareschal, D. (2002) Models of infant habituation. Trends in Cognitive Sciences 6:293–98.CrossRefGoogle Scholar
Sirois, S. & Mareschal, D. (2004) An interacting systems model of infant habituation. Journal of Cognitive Neuroscience, 16:1352–62.CrossRefGoogle ScholarPubMed
Slater, A., Morison, V., Somers, M., Mattock, A., Brown, E. & Taylor, D. (1990) Newborn and older infants' perception of partly occluded objects. Infant Behavior and Development 13:3349.CrossRefGoogle Scholar
Sloutsky, V. M., Lo, Y.-F. & Fisher, A. (2001) How much does a shared name make things similar? Linguistic labels, similarity and the development of inductive inference. Child Development 72:1695–709.CrossRefGoogle ScholarPubMed
Sokolov, E. N. (1963) Perception and the conditioned reflex. Pergamon.Google ScholarPubMed
Sokolov, E. N. & Vinogradova, O. S. (1975) Neuronal mechanisms of the orienting reflex. Erlbaum.Google ScholarPubMed
Spelke, E. S., Breinlinger, K., Macomber, J. & Jacobson, K. (1992) Origins of knowledge. Psychological Review 99:605–32.CrossRefGoogle ScholarPubMed
Sporns, O., Tononi, G. & Edelman, G. M. (2000) Theoretical neuroanatomy: Relating anatomical and functional connectivity in graphs and cortical connection matrices. Cerebral Cortex 10:127–41.CrossRefGoogle ScholarPubMed
Stager, C. L. & Werker, J. F. (1997) Infants listen for more phonetic detail in speech perception tasks than in word-learning tasks. Nature 388:381–82.CrossRefGoogle ScholarPubMed
Stein, J. & Walsh, V. (1997) To see but not to read: The magnocellular theory of dyslexia. Trends in Neurosciences 20:147–52.CrossRefGoogle ScholarPubMed
Thelen, E., Corbetta, D. & Spencer, J. P. (1996) Development of reaching during the first year: Role of movement speed. Journal of Experimental Psychology: Human Perception and Performance 22:1059–76.Google ScholarPubMed
Thelen, E. & Smith, L. B. (1994) A dynamic systems approach to the development of cognition and action. MIT Press.Google Scholar
Thomas, M. S. C. & Karmiloff-Smith, A. (2003) Modelling language acquisition in atypical phenotypes. Psychological Review 110:647–82.CrossRefGoogle Scholar
Thorpe, W. H. (1956) Learning and instinct in animals. Methuen.Google ScholarPubMed
Trehub, S. (1976) The discrimination of foreign speech contrasts by infants and adults. Child Development 47:466–72.CrossRefGoogle Scholar
Triesch, J., Teuscher, C., Deák, G. & Carlson, E. (2006) Gaze following: Why (not) learn it? Developmental Science 9:125–47.CrossRefGoogle Scholar
Turrigiano, G., Abbott, L. F. & Marder, E. (1994) Activity-dependent changes in the intrinsic properties of cultured neurons. Science 264:974–77.CrossRefGoogle ScholarPubMed
Ungerleider, L. G. & Mishkin, M. (1982) Two cortical visual systems. In: Analysis of visual behavior, ed. Ingle, D. J., Goodale, M. A. & Mansfield, R. J. W., pp. 549–86. MIT Press.Google Scholar
Valenza, E., Simion, F., Cassia, V. M. & Umilta, C. (1996) Face preference at birth. Journal of Experimental Psychology: Human Perception and Performance 22:892903.Google ScholarPubMed
Van der Lely, H. K. J. (1997) Language and cognitive development in a grammatical SLI boy: Modularity and innateness. Journal of Neurolinguistics 10:75107.CrossRefGoogle Scholar
Van der Meer, A. L. H., Van der Weel, F. R. & Lee, D. N. (1995) The functional significance of arm movements in neonates. Science 267:693–95.CrossRefGoogle ScholarPubMed
Van Essen, D. C., Anderson, C. H. & Felleman, D. J. (1992) Information processing in the primate visual system: An integrated systems perspective. Science 255:419–23.CrossRefGoogle Scholar
Vihman, M. M. (1991) Ontogeny of phonetic gestures. In: Modularity and the motor theory of speech perception, ed. Mattingly, I. & Studdert-Kennedy, M., pp. 6984. Erlbaum.Google Scholar
Vihman, M. M. (2002) The role of mirror neurons in the ontogeny of speech. In: Mirror neurons and the evolution of brain and language, ed. Stamenov, M. & Gallese, V., pp. 305–14. John Benjamins.CrossRefGoogle Scholar
Vygotsky, L. (1986) Thought and language. MIT Press.Google Scholar
Vygotsky, L. S. (1978) Mind in Society. The developmental of higher psychological processes. Harvard University Press.Google Scholar
Waddington, C. H. (1953) Genetic assimilation of an acquired character. Evolution 7:118–26.CrossRefGoogle Scholar
Waddington, C. H. (1957) The strategy of the genes. Allen and Unwin.Google Scholar
Wallace, V., Menn, L. & Yoshinaga-Itano, C. (1998) Is babble the gateway to speech for all children? A longitudinal study of children who are deaf or hard of hearing. Volta Review 100:121–48.Google Scholar
Walsh, V., Ashbridge, E. & Cowey, A. (1998) Cortical plasticity in perceptual learning demonstrated by transcranial magnetic stimulation. Neuropsychologia 36:363–67.CrossRefGoogle ScholarPubMed
Watkins, K. E., Dronkers, N. F. & Vargha-Khadem, F. (2002a) Behavioural analysis of an inherited speech and language disorder: Comparison with acquired aphasia. Brain 125:452–64.CrossRefGoogle ScholarPubMed
Watkins, K. E., Vargha-Khadem, F., Ashburner, J., Passingham, R. E., Connelly, A., Friston, K. J., Frackowiak, R. S. J., Mishkin, M. & Gadian, D. G. (2002b) MRI analysis of an inherited speech and language disorder: Structural brain abnormalities. Brain 125:465–78.CrossRefGoogle ScholarPubMed
Webb, B. (1994) Robotic experiments in cricket phonotaxis. In: From animals to animats 3: Proceedings of the Third International Conference on the Simulation of Adaptive Behaviour Brighton, ed. Cliff, D., Husbands, P., Meyer, J.-A. & Wilson, S. W., pp. 4554. MIT Press.Google Scholar
Werker, J. & Tees, R. (1984) Cross-language speech perception: Evidence for perceptual reorganization during the first year of life. Infant Behavior and Development 7:4963.CrossRefGoogle Scholar
Westermann, G. & Miranda, E. R. (2004) A new model of sensorimotor coupling in the development of speech. Brain and Language 89:393400.CrossRefGoogle Scholar
Wilcox, T. (1999) Object individuation: Infants' use of shape, size, pattern, and color. Cognition 72:125–66.CrossRefGoogle ScholarPubMed
Wilcox, T. & Schweinle, A. (2002) Object individuation and event mapping: Developmental changes in infants' use of featural information. Developmental Science 5:132–50.CrossRefGoogle Scholar
Xu, F. & Carey, S. (1996) Infants' metaphysics: The case of numerical identity. Cognitive Psychology 30:111–53.CrossRefGoogle ScholarPubMed
Zelazo, P. R., Weiss, M. J. S. & Tarquinio, N. (1991) Habituation and recovery of neonatal orienting to auditory stimuli. In: Newborn attention: Biological constraints and the influence of experience, ed. Weiss, M. J. S. & Zelazo, P. R., pp. 120–41. Ablex.Google Scholar
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Précis of Neuroconstructivism: How the Brain Constructs Cognition
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Précis of Neuroconstructivism: How the Brain Constructs Cognition
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Précis of Neuroconstructivism: How the Brain Constructs Cognition
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *