Skip to main content Accessibility help
Hostname: page-component-6c8bd87754-sbrr8 Total loading time: 1.578 Render date: 2022-01-20T05:29:11.064Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

A unified framework for addiction: Vulnerabilities in the decision process

Published online by Cambridge University Press:  29 July 2008

A. David Redish
Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455redish@umn.edu
Steve Jensen
Graduate Program in Computer Science, University of Minnesota, Minneapolis, MN
Adam Johnson
Graduate Program in Neuroscience and Center for Cognitive Sciences, University of Minnesota, Minneapolis, MN


The understanding of decision-making systems has come together in recent years to form a unified theory of decision-making in the mammalian brain as arising from multiple, interacting systems (a planning system, a habit system, and a situation-recognition system). This unified decision-making system has multiple potential access points through which it can be driven to make maladaptive choices, particularly choices that entail seeking of certain drugs or behaviors. We identify 10 key vulnerabilities in the system: (1) moving away from homeostasis, (2) changing allostatic set points, (3) euphorigenic “reward-like” signals, (4) overvaluation in the planning system, (5) incorrect search of situation-action-outcome relationships, (6) misclassification of situations, (7) overvaluation in the habit system, (8) a mismatch in the balance of the two decision systems, (9) over-fast discounting processes, and (10) changed learning rates. These vulnerabilities provide a taxonomy of potential problems with decision-making systems. Although each vulnerability can drive an agent to return to the addictive choice, each vulnerability also implies a characteristic symptomology. Different drugs, different behaviors, and different individuals are likely to access different vulnerabilities. This has implications for an individual's susceptibility to addiction and the transition to addiction, for the potential for relapse, and for the potential for treatment.

Main Articles
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Adams, C. D. & Dickinson, A. (1981) Instrumental responding following reinforcer devaluation. Quarterly Journal of Experimental Psychology: Comparative and Physiological Psychology 33(B):109–22.CrossRefGoogle Scholar
Adams, S., Kesner, R. P. & Ragozzino, M. E. (2001) Role of the medial and lateral caudate-putamen in mediating an auditory conditional response association. Neurobiology of Learning and Memory 76:106–16.CrossRefGoogle ScholarPubMed
Aggleton, J. P. (1993) The contribution of the amygdala to normal and abnormal emotional states. Trends in Neurosciences 16(8):328–33.CrossRefGoogle ScholarPubMed
Agster, K. L., Fortin, N. J. & Eichenbaum, H. (2002) The hippocampus and disambiguation of overlapping sequences. Journal of Neuroscience 22(13):5760–68.Google ScholarPubMed
Ahmed, S. H. & Koob, G. F. (1997) Cocaine- but not food-seeking behavior is reinstated by stress after extinction. Psychopharmacology 132(3):289–95.CrossRefGoogle Scholar
Ahmed, S. H. & Koob, G. F. (1998) Transition from moderate to excessive drug intake: Change in hedonic set point. Science 282:298300.CrossRefGoogle ScholarPubMed
Ahmed, S. H. & Koob, G. F. (1999) Long-lasting increase in the set point for cocaine self-administration after escalation in rats. Psychopharmacology 146(3):303–12.CrossRefGoogle ScholarPubMed
Ahmed, S. H. & Koob, G. F. (2004) Vertical shifts in dose-injection curves reflect reward allostasis not sensitization. Psychopharmacology 171:354–55.Google Scholar
Ahmed, S. H. & Koob, G. F. (2005) Transition to drug addiction: A negative reinforcement model based on an allostatic decrease in reward function. Psychopharmacology 180:473–90.CrossRefGoogle ScholarPubMed
Ainslie, G. (1992) Picoeconomics: The strategic interaction of successive motivational states within the person. Cambridge University Press.Google Scholar
Ainslie, G. (2001) Breakdown of will. Cambridge University Press.CrossRefGoogle ScholarPubMed
Ainslie, G. & Monterosso, J. (2004) Behavior: A marketplace in the brain? Science 306(5695):421–23.CrossRefGoogle Scholar
Alessi, S. M. & Petry, N. M. (2003) Pathological gambling severity is associated with impulsivity in a delay discounting procedure. Behavioural Processes 64(3):345–54.CrossRefGoogle Scholar
Altman, J., Everitt, B. J., Robbins, T. W., Glautier, S., Markou, A., Nutt, D., Oretti, R. & Phillips, G. D. (1996) The biological, social and clinical bases of drug addiction: Commentary and debate. Psychopharmacology 125(4):285345.CrossRefGoogle ScholarPubMed
American Psychiatric Association (2000) Diagnostic and Statistical Manual of Mental Disorders, Text Revision (DSM-IV-TR™), 4th edition.American Psychiatric Association.Google Scholar
Anagnostaras, S. G., Schallert, T. & Robinson, T. E. (2002) Memory processes governing amphetamine-induced psychomotor sensitization. Neuropsychopharmacology 26(6):703–15.CrossRefGoogle ScholarPubMed
Arbib, M., ed. (1995) The handbook of brain theory and neural networks. MIT Press.Google Scholar
Arbisi, P. A., Billington, C. J. & Levine, A. S. (1999) The effect of naltrexone on taste detection and recognition threshold. Appetite 32(2):241–49.CrossRefGoogle ScholarPubMed
Arbuthnott, G. W. & Wickens, J. (2007) Space, time and dopamine. Trends in Neurosciences 30(2):6269.CrossRefGoogle ScholarPubMed
Arnsten, A. F. T., Cai, J. X., Murphy, B. L. & Goldman-Rakic, P. S. (1994) Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology 116:143–51.CrossRefGoogle ScholarPubMed
Averbeck, B. B. & Lee, D. (2007) Prefrontal neural correlates of memory for sequences. Journal of Neuroscience 27(9):2204–11.CrossRefGoogle ScholarPubMed
Azolosa, J. L., Stitzer, M. L. & Greenwald, M. K. (1994) Opioid physical dependence development: Effects of single versus repeated morphine pretreatments and of subjects' opioid exposure history. Psychopharmacology 114(1):7180.CrossRefGoogle ScholarPubMed
Baddeley, A. D. (1986) Working memory. Oxford University Press.Google ScholarPubMed
Balfour, D. J. K. & Fagerström, K. O. (1996) Pharmacology of nicotine and its therapeutic use in smoking cessation and neurodegenerative disorders. Pharmacology and Therapeutics 72(1):5181.CrossRefGoogle ScholarPubMed
Balfour, D. J. K., Wright, A. E., Benwell, M. E. M. & Birrell, C. E. (2000) The putative role of extra-synaptic mesolimbic dopamine in the neurobiology of nicotine dependence. Behavioural Brain Research 113(1–2):7383.CrossRefGoogle ScholarPubMed
Balleine, B. W. & Dickinson, A. (1998) Goal-directed instrumental action: Contingency and incentive learning and their cortical substrates. Neuropharmacology 37(4–5):407–19.CrossRefGoogle ScholarPubMed
Balleine, B. W. & Ostlund, S. B. (2007) Still at the choice-point: Action selection and initiation in instrumental conditioning. Annals of the New York Academy of Sciences 1104:147–71.CrossRefGoogle Scholar
Bals-Kubik, R., Herz, A. & Shippenberg, T. (1989) Evidence that the aversive effects of opioid antagonists and κ-agonists are centrally mediated. Psychopharmacology 98:203206.CrossRefGoogle ScholarPubMed
Balster, R. L. (1973) Fixed-interval schedule of cocaine reinforcement: Effect of dose and infusion duration. Journal of Experimental Analysis of Behavior 20(1):119–29.CrossRefGoogle ScholarPubMed
Barkley, R. A. (2001) The executive functions and self-regulation: An evolutionary neuropsychological perspective. Neuropsychology Review 11(1):129.CrossRefGoogle ScholarPubMed
Barkley, R. A., Edwards, G., Laneri, M., Fletcher, K. & Metevia, L. (2001) Executive functioning, temporal discounting, and sense of time in adolescents with attention deficit hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD). Journal of Abnormal Child Psychology 29(6):541–56.CrossRefGoogle Scholar
Barnes, C. A. (1979) Memory deficits associated with senescence: A neurophysiological and behavioral study in the rat. Journal of Comparative and Physiological Psychology 93:74104.CrossRefGoogle ScholarPubMed
Barnes, C. A., Nadel, L. & Honig, W. K. (1980) Spatial memory deficit in senescent rats. Canadian Journal of Psychology 34(1):2939.CrossRefGoogle ScholarPubMed
Barnes, T. D., Kubota, Y., Hu, D., Jin, D. Z. & Graybiel, A. M. (2005) Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories. Nature 437:1158–61.CrossRefGoogle ScholarPubMed
Barto, A. G. (1995) Adaptive critics and the basal ganglia. In: Models of information processing in the basal ganglia, ed. Houk, J. C., Davis, J. L. & Beiser, D. G., pp. 215–32. MIT Press.Google Scholar
Bayer, H. M. & Glimcher, P. (2005) Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47:129–41.CrossRefGoogle ScholarPubMed
Bechara, A. (2005) Decision making, impulse control and loss of willpower to resist drugs: A neurocognitive perspective. Nature Neuroscience 8(11):1458–63.CrossRefGoogle ScholarPubMed
Bechara, A., Dolan, S., Denburg, N., Hindes, A., Andersen, S. W. & Nathan, P. E. (2001) Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia 39:376–89.CrossRefGoogle ScholarPubMed
Becker, G. S., Grossman, M. & Murphy, K. M. (1994) An empirical analysis of cigarette addiction. The American Economic Review 84(3):396418.Google Scholar
Becker, G. S. & Murphy, K. M. (1988) A theory of rational addiction. Journal of Political Economy 96(4):675700.CrossRefGoogle Scholar
Beiser, D. G., Hua, S. E. & Houk, J. C. (1997) Network models of the basal ganglia. Current Opinion in Neurobiology 7(2):185–90.CrossRefGoogle ScholarPubMed
Benowitz, N. L. (1996) Pharmacology of nicotine: Addiction and therapeutics. Annual Review of Pharmacology and Toxicology 36:597613.CrossRefGoogle ScholarPubMed
Berke, J. D. (2003) Learning and memory mechanisms involved in compulsive drug use and relapse. In: Drugs of abuse: Analysis of neurological effects, ed. Wang, J., pp. 75102. Humana Press.Google Scholar
Bernheim, B. D. & Rangel, A. (2004) Addiction and cue-triggered decision processes. The American Economic Review 94(5):1558–90.CrossRefGoogle Scholar
Berridge, K. C. (2007) The debate over dopamine's role in reward: The case for incentive salience. Psychopharmacology 191(3):391431.CrossRefGoogle ScholarPubMed
Berridge, K. C. & Robinson, T. E. (1998) What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Research Reviews 28:309–69.CrossRefGoogle ScholarPubMed
Berridge, K. C. & Robinson, T. E. (2003) Parsing reward. Trends in Neurosciences 26(9):507–13.CrossRefGoogle ScholarPubMed
Bickel, W. K. & Marsch, L. A. (2001) Toward a behavioral economic understanding of drug dependence: Delay discounting processes. Addiction 96:7386.CrossRefGoogle Scholar
Bickel, W. K., Miller, M. L., Yi, R., Kowal, B. P., Lindquist, D. M. & Pitcock, J. A. (2007) Behavioral and neuroeconomics of drug addiction: Competing neural systems and temporal discounting processes. Drug and Alcohol Dependence 90(S1):S85S91.CrossRefGoogle ScholarPubMed
Bobo, J. K. & Husten, C. (2001) Sociocultural influences on smoking and drinking. Alcohol Research and Health 24(4):225–32.Google Scholar
Bolles, R. C. (1967) Theory of motivation. Harper & Row.Google Scholar
Bolles, R. C. (1972) Reinforcement, expectancy, and learning. Psychological Review 79(5):394409.CrossRefGoogle Scholar
Bossert, J. M., Ghitza, U. E., Lu, L., Epstein, D. H. & Shaham, Y. (2005) Neurobiology of relapse to heroin and cocaine seeking: An update and clinical implications. European Journal of Pharmacology 526(1–3):3650.CrossRefGoogle ScholarPubMed
Bouton, M. E. (2002) Context, ambiguity, and unlearning: Sources of relapse after behavioral extinction. Biological Psychiatry 52:976–86.CrossRefGoogle ScholarPubMed
Bouton, M. E. (2004) Context and behavioral processes in extinction. Learning and Memory 11(5):485–94.CrossRefGoogle ScholarPubMed
Broom, D. C., Jutkiewicz, E. M., Folk, J. E., Traynor, J. R., Rice, K. C. & Woods, J. H. (2002) Nonpeptidic δ-opioid receptor agonists reduce immobility in the forced swim assay in rats. Neuropsychopharmacology 26:744–55.CrossRefGoogle ScholarPubMed
Brown, M. F. (1992) Does a cognitive map guide choices in the radial-arm maze? Journal of Experimental Psychology 18(1):5666.Google ScholarPubMed
Buckner, R. L. & Carroll, D. C. (2007) Self-projection and the brain. Trends in Cognitive Sciences 11(2):4957.CrossRefGoogle Scholar
Buzsáki, G. (1996) The hippocampo-neocortical dialogue. Cerebral Cortex 6(2):8192.CrossRefGoogle ScholarPubMed
Cagniard, B., Beeler, J. A., Britt, J. P., McGehee, D. S., Marinelli, M. & Zhuang, X. (2006) Dopamine scales performance in the absence of new learning. Neuron 51(5):541–47.CrossRefGoogle ScholarPubMed
Caillé, S. & Parsons, L. H. (2003) SR141716A reduces the reinforcing properties of heroin but not heroin-induced increases in nucleus accumbens dopamine in rats. European Journal of Neuroscience 18(11):3145–49.CrossRefGoogle Scholar
Capaldi, E. J. (1957) The effect of different amounts of alternating partial reinforcement on resistance to extinction. American Journal of Psychology 70(3):451–52.CrossRefGoogle ScholarPubMed
Cappendijk, S. L., Hurd, Y. L., Nylander, I., van Ree, J. M. & Terenius, L. (1999) A heroin-, but not a cocaine-expecting, self-administration state preferentially alters endogenous brain peptides. European Journal of Pharmacology 365(2–3):175–82.CrossRefGoogle Scholar
Carelli, R. M. (2002) Nucleus accumbens cell firing during goal-directed behaviors for cocaine vs. “natural” reinforcement. Physiology and Behavior 76(3):379–87.CrossRefGoogle ScholarPubMed
Carelli, R. M., Ijames, S. G. & Crumling, A. J. (2000) Evidence that separate neural circuits in the nucleus accumbens encode cocaine versus “natural” (water and food) reward. Journal of Neuroscience 20(11):4255–66.Google ScholarPubMed
Carelli, R. M. & West, M. O. (1991) Representation of the body by single neurons in the dosolateral striatum of the awake, unrestrained rat. Journal of Comparative Neurology 309:231–49.CrossRefGoogle Scholar
Carelli, R. M. & Wondolowski, J. (2003) Selective encoding of cocaine versus natural rewards by nucleus accumbens neurons is not related to chronic drug exposure. Journal of Neuroscience 23(35):11214–23.Google Scholar
Carr, H. & Watson, J. B. (1908) Orientation in the white rat. Journal of Comparative Neurology and Psychology 18:2744.CrossRefGoogle Scholar
Centonze, D., Gubellini, P., Picconi, B., Calabresi, P., Giacomini, P. & Bernardi, G. (1999) Unilateral dopamine denervation blocks corticostriatal LTP. Journal of Neurophysiology 82(6):3575–79.Google ScholarPubMed
Chamberlain, S. R., Muller, U., Robbins, T. W. & Sahakian, B. J. (2006) Neuropharmacological modulation of cognition. Current Opinion in Neurology 19(6):607–12.CrossRefGoogle ScholarPubMed
Chang, Q. & Gold, P. E. (2004) Inactivation of dorsolateral striatum impairs acquisition of response learning in cue-deficient, but not cue-available, conditions. Behavioral Neuroscience 118(2):383–88.CrossRefGoogle Scholar
Chastain, G. (2006) Alcohol, neurotransmitter systems, and behavior. Journal of General Psychology 133(4):329–35.CrossRefGoogle ScholarPubMed
Chavkin, C., James, I. F. & Goldstein, A. (1982) Dynorphin is a specific endogenous ligand of the kappa opioid receptor. Science 215(4531):413–15.CrossRefGoogle ScholarPubMed
Chen, R., Tilley, M. R., Wei, H., Zhou, F., Zhou, F.-M., Ching, S., Quan, N., Stephens, R. L., Hill, E. R., Nottoli, T., Han, D. D. & Gu, H. H. (2006) Abolished cocaine reward in mice with a cocaine-insensitive dopamine transporter. Proceedings of the National Academy of Sciences, USA 103(24):9333–38.CrossRefGoogle ScholarPubMed
Chiamulera, C. (2005) Cue reactivity in nicotine and tobacco dependence: A “multiple-action” model of nicotine as a primary reinforcement and as an enhancer of the effects of smoking-associated stimuli. Brain Research Reviews 48(1):7497.CrossRefGoogle ScholarPubMed
Childress, A. R., Ehrman, R., Rohsenow, D. J., Robbins, S. J. & O'Brien, C. P. (1992) Classically conditioned factors in drug dependence. In: Substance abuse: A comprehensive textbook, ed. Lowinson, J. H., Ruiz, P. & Millman, R. B., pp. 5669. Williams and Wilkins.Google Scholar
Childress, A. R., Hole, A. V., Ehrman, R. N., Robbins, S. J., McLellan, A. T. & O'Brien, C. P. (1993) Cue reactivity and cue reactivity interventions in drug dependence. NIDA Research Monographs 137:7394.Google ScholarPubMed
Childress, A. R., McLellan, A. T., Ehrman, R. & O'Brien, C. P. (1988) Classically conditioned responses in opioid and cocaine dependence: A role in relapse? NIDA Research Monographs 84:2543.Google ScholarPubMed
Childress, A. R., Mozley, P. D., McElgin, W., Fitzgerald, J., Reivich, M. & O'Brien, C. P. (1999) Limbic activation during cue-induced cocaine craving. The American Journal of Psychiatry 156:1118.CrossRefGoogle ScholarPubMed
Ciraulo, D. A., Piechniczek-Buczek, J. & Iscan, E. N. (2003) Outcome predictors in substance use disorders. The Psychiatric Clinics of North America 26:381409.CrossRefGoogle ScholarPubMed
Clark, L. & Robbins, T. W. (2002) Decision-making deficits in drug addiction. Trends in Cognitive Sciences 6(9):361–63.CrossRefGoogle ScholarPubMed
Clark, R. E. & Squire, L. R. (1998) Classical conditioning and brain systems: The role of awareness. Science 280:7781.CrossRefGoogle Scholar
Cohen, N. J. & Eichenbaum, H. (1993) Memory, amnesia, and the hippocampal system. MIT Press.Google Scholar
Cohen, N. J. & Squire, L. R. (1980) Preserved learning and retention of pattern-analyzing skill in amnesia: Dissociation of knowing how and knowing that. Science 210:207–10.CrossRefGoogle ScholarPubMed
Colwill, R. M. & Rescorla, R. A. (1985) Post-conditioning devaluation of a reinforcer affects instrumental responding. Journal of Experimental Psychology: Animal Behavior Processes 11:120–32.Google Scholar
Colwill, R. M. & Rescorla, R. A. (1990) Effect of reinforcer devaluation on discriminative control of instrumental behavior. Journal of Experimental Psychology: Animal Behavior Processes 16(1):4047.Google ScholarPubMed
Corbit, L. H. & Balleine, B. W. (2000) The role of the hippocampus in instrumental conditioning. Journal of Neuroscience 20(11):4233–39.Google ScholarPubMed
Corbit, L. H., Muir, J. L. & Balleine, B. W. (2001) The role of the nucleus accumbens in instrumental conditioning: Evidence of a functional dissociation between accumbens core and shell. Journal of Neuroscience 21(9):3251–60.Google Scholar
Corbit, L. H., Ostlund, S. B. & Balleine, B. W. (2002) Sensitivity to instrumental contingency degradation is mediated by the entorhinal cortex and its efferents via the dorsal hippocampus. Journal of Neuroscience 22(24):10976–84.Google ScholarPubMed
Coutureau, E. & Killcross, S. (2003) Inactivation of the infralimbic prefrontal cortex reinstates goal-directed responding in overtrained rats. Behavioural Brain Research 146:167–74.CrossRefGoogle ScholarPubMed
Crabbe, J. C. (2002) Genetic contributions to addiction. Annual Review of Psychology 53(1):435–62.CrossRefGoogle ScholarPubMed
Cummings, K. M. (2002) Programs and policies to discourage the use of tobacco products. Oncogene 21(48):7349–64.CrossRefGoogle Scholar
Curran, T. (1995) On the neural mechanisms of sequence learning. Psyche 2(12). (Online publication). Available at:–12-curran.html.Google Scholar
Curran, T. (2001) Implicit learning revealed by the method of opposition. Trends in Cognitive Science 5(12):503504.CrossRefGoogle ScholarPubMed
Custer, R. L. (1984) Profile of the pathological gambler. Journal of Clinical Psychiatry 45( 12, Suppl. 2):3538.Google Scholar
Dalley, J. W., Cardinal, R. N. & Robbins, T. W. (2004) Prefrontal executive and cognitive functions in rodents: Neural and neurochemical substrates. Neuroscience and Biobehavioral Reviews 28(7):771–84.CrossRefGoogle ScholarPubMed
Daly, J. W. & Fredholm, B. B. (1998) Caffeine – an atypical drug of dependence. Drug and Alcohol Dependence 51:199206.CrossRefGoogle ScholarPubMed
Dani, J. A. & Heinemann, S. (1996) Molecular and cellular aspects of nicotine abuse. Neuron 16:905908.CrossRefGoogle ScholarPubMed
Davis, J. B., Donahue, R. J., Discenza, C. B., Waite, A. A. & Ramus, S. J. (2006) Hippocampal dependence of anticipatory neuronal firing in the orbitofrontal cortex of rats learning an odor-sequence memory task. Society for Neuroscience Abstracts, Program No. 66.7.Google Scholar
Davis, J. R. & Tunks, E. (1991) Environments and addiction: A proposed taxonomy. The International Journal of the Addictions 25(7A & 8A):805–26.CrossRefGoogle ScholarPubMed
Daw, N. D. (2003) Reinforcement learning models of the dopamine system and their behavioral implications. Unpublished doctoral dissertation, Carnegie Mellon University, Pittsburgh, PA.Google Scholar
Daw, N. D., Courville, A. C. & Touretzky, D. S. (2006) Representation and timing in theories of the dopamine system. Neural Computation 18:1637–77.CrossRefGoogle ScholarPubMed
Daw, N. D., Niv, Y. & Dayan, P. (2005) Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience 8:1704–11.CrossRefGoogle ScholarPubMed
Day, L. B., Weisend, M., Sutherland, R. J. & Schallert, T. (1999) The hippocampus is not necessary for a place response but may be necessary for pliancy. Behavioral Neuroscience 113(5):914–24.CrossRefGoogle Scholar
Dayan, P. & Balleine, B. W. (2002) Reward, motivation, and reinforcement learning. Neuron 36:285–98.CrossRefGoogle ScholarPubMed
Dayan, P., Kakade, S. & Montague, P. R. (2000) Learning and selective attention. Nature Neuroscience 3:1218–23.CrossRefGoogle ScholarPubMed
DeFeudis, F. V. (1978) Environmental theory of drug addiction. General Pharmacology 9(5):303306.CrossRefGoogle ScholarPubMed
de la Fuente-Fernandez, R., Phillips, A. G., Zamburlini, M., Sossi, V., Calne, D. B., Ruth, T. J. & Stoessl, A. J. (2002) Dopamine release in human ventral striatum and expectation of reward. Behavioural Brain Research 136:359–63.CrossRefGoogle Scholar
Dennis, W. (1932) Multiple visual discrimination in the block elevated maze. Journal of Comparative and Physiological Psychology 13:391–96.CrossRefGoogle Scholar
Deroche-Gamonet, V., Belin, D. & Piazza, P. V. (2004) Evidence for addiction-like behavior in the rat. Science 305(5686):1014–17.CrossRefGoogle ScholarPubMed
Devan, B. D. & White, N. M. (1999) Parallel information processing in the dorsal striatum: Relation to hippocampal function. Journal of Neuroscience 19(7):2789–98.Google ScholarPubMed
Devenport, L. D. (1979) Superstitious bar pressing in hippocampal and septal rats. Science 205(4407):721–23.CrossRefGoogle ScholarPubMed
Devenport, L. D. (1980) Response-reinforcer relations and the hippocampus. Behavioral and Neural Biology 29(1):105–10.CrossRefGoogle ScholarPubMed
Devenport, L. D., Devenport, J. A. & Holloway, F. A. (1981a) Necessity of the hippocampus for alcohol's indirect but not behavioral action. Behavioral and Neural Biology 33(4):476–87.CrossRefGoogle Scholar
Devenport, L. D., Devenport, J. A. & Holloway, F. A. (1981b) Reward-induced stereotypy: Modulation by the hippocampus. Science 212(4500):1288–89.CrossRefGoogle ScholarPubMed
Devenport, L. D. & Holloway, F. A. (1980) The rat's resistance to superstition: Role of the hippocampus. Journal of Comparative Physiology and Psychology 94(4):691705.CrossRefGoogle ScholarPubMed
De Vries, T. J. & Shippenberg, T. S. (2002) Neural systems underlying opiate addiction. Journal of Neuroscience 22(9):3321–25.Google ScholarPubMed
de Wit, H., & Stewart, J. (1981) Reinstatement of cocaine-reinforced responding in the rat. Psychopharmacology 75(2):134–43.CrossRefGoogle ScholarPubMed
Di Chiara, G. (1997) Alcohol and dopamine. Alcohol Research and Health 21(2):108–13.Google ScholarPubMed
Di Chiara, G. (1999) Drug addiction as dopamine-dependent associative learning disorder. European Journal of Pharmacology 375(1–3):1330.CrossRefGoogle ScholarPubMed
Dick, D. M., Jones, K., Saccone, N., Hinrichs, A., Wang, J. C., Goate, A., Bierut, L., Almasy, L., Schuckit, M., Hesselbrock, V., Tischfield, J., Foroud, T., Edenberg, H., Porjesz, B. & Begleiter, H. (2006) Endophenotypes successfully lead to gene identification: Results from the collaborative study on the genetics of alcoholism. Behavior Genetics 36(1):112–26.CrossRefGoogle ScholarPubMed
Dickerson, M. & O'Connor, J. (2006) Gambling as an addictive behavior. Cambridge University Press.CrossRefGoogle Scholar
Dickinson, A. (1980) Contemporary animal learning theory. Cambridge University Press.Google Scholar
Dickinson, A. (1985) Actions and habits: The development of behavioural autonomy. Philosophical Transactions of the Royal Society, London B 308:6778.CrossRefGoogle Scholar
Dickinson, A., Wood, N. & Smith, J. W. (2002) Alcohol seeking by rats: Action or habit? The Quarterly Journal of Experimental Psychology: Section B 55(4):331–48.CrossRefGoogle ScholarPubMed
DiMattia, B. V. D. & Kesner, R. P. (1988) Spatial cognitive maps: Differential role of parietal cortex and hippocampal formation. Behavioral Neuroscience 102(4):471–80.CrossRefGoogle ScholarPubMed
Domjan, M. (1998) The principles of learning and behavior, 4th edition.Brooks/Cole.Google Scholar
Dowling, N., Smith, D. & Thomas, T. (2005) Electronic gaming machines: Are they the “crack cocaine” of gambling? Addiction 100(1):3345.CrossRefGoogle ScholarPubMed
Doya, K. (2000a) Metalearning, neuromodulation, and emotion. In: Affective minds, ed. Hatano, G., Okada, N. & Tanabe, H., pp. 101104. Elsevier.Google Scholar
Doya, K. (2000b) Reinforcement learning in continuous time and space. Neural Computation 12:219–45.CrossRefGoogle ScholarPubMed
Doya, K. (2002) Metalearning and neuromodulation. Neural Networks 15(4–6):495506.CrossRefGoogle ScholarPubMed
Doyon, J., Laforce, R., Bouchard, G., Gaudreau, D., Roy, J., Poirer, M., Bedard, P. J., Bedard, F. & Bouchard, J. P. (1998) Role of the striatum, cerebellum and frontal lobes in the automatization of a repeated visuomotor sequence of movements. Neuropsychologia 36(7):625–41.CrossRefGoogle ScholarPubMed
Drummond, D. C. (2001) Theories of drug craving, ancient and modern. Addiction 96(1):3346.CrossRefGoogle ScholarPubMed
Dudish-Poulsen, S. A. & Hatsukami, D. K. (1997) Dissociation between subjective and behavioral responses after cocaine stimuli presentations. Drug and Alcohol Dependence 47(1):19.CrossRefGoogle ScholarPubMed
Durstewitz, D., Kelc, M. & Gunturkun, O. (1999) A neurocomputational theory of the dopaminergic modulation of working memory functions. Journal of Neuroscience 19(7):2807–22.Google ScholarPubMed
Durstewitz, D., Seamans, J. K. & Sejnowski, T. J. (2000) Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. Journal of Neurophysiology 83(3):1733–50.Google Scholar
Ehrman, R., Ternes, J., O'Brien, C. P. & McLellan, A. T. (1992) Conditioned tolerance in human opiate addicts. Psychopharmacology 108(1–2):218–24.CrossRefGoogle ScholarPubMed
Eichenbaum, H., Stewart, C. & Morris, R. G. M. (1990) Hippocampal representation in place learning. Journal of Neuroscience 10(11):3531–42.Google ScholarPubMed
Epstein, D. H. & Preston, K. L. (2003) The reinstatement model and relapse prevention: A clinical perspective. Psychopharmacology 168:3141.CrossRefGoogle ScholarPubMed
Evans, S. M. (1998) Behavioral pharmacology of caffeine. In: Handbook of substance abuse: Neurobehavioral pharmacology, ed. Tarter, R. E., Ammerman, R. T. & Ott, P. J., pp. 6996. Plenum.CrossRefGoogle Scholar
Everitt, B. J., Baldacchino, A., Blackshaw, A. J., Swainson, R. Wynne, K., Baker, N. B., Hunter, J., Carthy, T., Booker, E., London, M., Deakin, J. F., Sahakian, B. J. & Robbins, T. W. (1999) Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: Evidence for monoaminergic mechanisms. Neuropsychopharmacology 20:322–39.Google Scholar
Everitt, B. J., Dickinson, A. & Robbins, T. W. (2001) The neuropsychological basis of addictive behavior. Brain Research Reviews 36:129–38.CrossRefGoogle Scholar
Everitt, B. J. & Robbins, T. W. (2005) Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nature Neuroscience 8(11):1481–89.CrossRefGoogle ScholarPubMed
Everitt, B. J. & Wolf, M. E. (2002) Psychomotor stimulant addiction: A neural systems perspective. Journal of Neuroscience 22(9):3312–20.Google ScholarPubMed
Faure, A., Haberland, U., Fran, C. C. & Massioui, N. E. (2005) Lesion to the nigrostriatal dopamine system disrupts stimulus-response habit formation. Journal of Neuroscience 25:2771–80.CrossRefGoogle ScholarPubMed
Feierstein, C. E., Quirk, M. C., Uchida, N., Sosulski, D. L. & Mainen, Z. F. (2006) Representation of spatial goals in rat orbitofrontal cortex. Neuron 60(4):495507.CrossRefGoogle Scholar
Ferbinteanu, J., Kennedy, P. J. & Shapiro, M. L. (2006) Episodic memory – from brain to mind. Hippocampus 16(9):704–15.CrossRefGoogle Scholar
Ferbinteanu, J. & Shapiro, M. L. (2003) Prospective and retrospective memory coding in the hippocampus. Neuron 40(6):1227–39.CrossRefGoogle ScholarPubMed
Ferraro, F. R., Balota, D. A. & Connor, L. T. (1993) Implicit memory and the formation of new associations in non-demented Parkinson's disease individuals and individuals with senile dementia of the Alzheimer type: A serial reaction time (SRT) investigation. Brain and Cognition 21(2):163–80.CrossRefGoogle Scholar
Ferster, C. B. & Skinner, B. F. (1957) Schedules of reinforcement. Appleton-Century-Crofts.CrossRefGoogle ScholarPubMed
Finch, D. M. (1996) Neurophysiology of converging synaptic inputs from rat prefrontal cortex, amygdala, midline thalamus, and hippocampal formation onto single neurons of the caudate/putamen and nucleus accumbens. Hippocampus 6:495512.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Fiore, M. C., ed. (2000) Treating tobacco use and dependence. U.S. Department of Health and Human Services, Public Health Service.Google ScholarPubMed
Flores, C. M., Dávila-García, M. I., Ulrich, Y. M. & Kellar, K. J. (1997) Differential regulation of neuronal nicotinic receptor binding sites following chronic nicotine administration. Journal of Neurochemistry 69:2216–19.CrossRefGoogle ScholarPubMed
Forkstam, C. & Petersson, K. M. (2005) Towards an explicit account of implicit learning. Current Opinion in Neurology 18(4):435–41.CrossRefGoogle ScholarPubMed
Fortin, N. J., Agster, K. L. & Eichenbaum, H. B. (2002) Critical role of the hippocampus in memory for sequences of events. Nature Neuroscience 5(5):458–62.Google Scholar
Frank, M. J., Seeberger, L. C. & O'Reilly, R. C. (2004) By carrot or by stick: Cognitive reinforcement learning in Parkinsonism. Science 306(5703):1940–43.CrossRefGoogle ScholarPubMed
Frederick, S., Loewenstein, G. & O'Donoghue, T. (2002) Time discounting and time preference: A critical review. Journal of Economic Literature 40(2):351401.CrossRefGoogle Scholar
Fuster, J. M. (1997) The prefrontal cortex: Anatomy, physiology, and neuropsychology of the frontal lobe, 3rd edition. Lippincott-Raven.Google Scholar
Garavan, H., Pankiewicz, J., Bloom, A., Cho, J.-K., Sperry, L., Ross, T. J., Salmeron, B. J., Risinger, R., Kelley, D. & Stein, E. A. (2000) Cue-induced cocaine craving: Neuroanatomical specificity for drug users and drug stimuli. American Journal of Psychiatry 157(11):1789–98.CrossRefGoogle ScholarPubMed
Gardiner, T. W. & Kitai, S. T. (1992) Single-unit activity in the globus pallidus and neostriatum of the rat during performance of a trained head-movement. Experimental Brain Research 88:517–30.CrossRefGoogle ScholarPubMed
Gawin, F. H. (1991) Cocaine addiction: Psychology and neuropsychology. Science 251(5001):1580–86.CrossRefGoogle Scholar
Georges, F., Moine, C. L. & Aston-Jones, G. (2006) No effect of morphine on ventral tegmental dopamine neurons during withdrawal. Journal of Neuroscience 26:5720–26.CrossRefGoogle ScholarPubMed
German, P. W. & Fields, H. L. (2007a) How prior reward experience biases exploratory movements: A probabilistic model. Journal of Neurophysiology 97(3):2083–93.CrossRefGoogle ScholarPubMed
German, P. W. & Fields, H. L. (2007b) Rat nucleus accumbens neurons persistently encode locations associated with morphine reward. Journal of Neurophysiology 97(3):2094–106.CrossRefGoogle ScholarPubMed
Gigerenzer, G. (2001) The adaptive toolbox: Toward a Darwinian rationality. Nebraska Symposium on Motivation 47:113–46.Google Scholar
Gigerenzer, G. & Goldstein, D. G. (1996) Reasoning the fast and frugal way: Models of bounded rationality. Psychological Review 103:650–69.CrossRefGoogle ScholarPubMed
Giordano, L. A., Bickel, W. K., Loewenstein, G., Jacobs, E. A., Marsch, L. & Badger, G. J. (2002) Mild opioid deprivation increases the degree that opioid-dependent outpatients discount delayed heroin and money. Psychopharmacology 163(2):174–82.CrossRefGoogle ScholarPubMed
Glimcher, P. W. (2003) Decisions, uncertainty, and the brain: The science of neuroeconomics. MIT Press.Google Scholar
Glimcher, P. W. & Rustichini, A. (2004) Neuroeconomics: The consilience of brain and decision. Science 306(5695):447–52.CrossRefGoogle ScholarPubMed
Gold, M. S. (1997) Cocaine (and crack): Clinical aspects. In: Substance abuse: A comprehensive textbook, ed. Lowinson, J. H., Ruiz, P., Millman, R. B. & Langrod, J. G., pp. 181–99. Williams and Wilkins.Google Scholar
Gold, P. (2004) Coordination of multiple memory systems. Neurobiology of Learning and Memory 82(3):230–42.CrossRefGoogle ScholarPubMed
Goldman, D., Oroszi, G. & Ducci, F. (2005) The genetics of addictions: Uncovering the genes. Nature Reviews Genetics 6(7):521–32.CrossRefGoogle ScholarPubMed
Goldman, M. S., Boca, F. K. D. & Darkes, J. (1999) Alcohol expectancy theory: The application of cognitive neuroscience. In: Psychological theories of drinking and alcoholism, ed. Leonard, K. E. & lsn, H. T., pp. 203–46. Guilford Press.Google ScholarPubMed
Goldman, M. S., Brown, S. A. & Christiansen, B. A. (1987) Expectancy theory: Thinking about drinking. In: Psychological theories of drinking and alcoholism, ed. lsn, H. T. & lsn, K. E. , pp. 181226. Guilford Press.Google ScholarPubMed
Goldman, P. S., Rosvold, H. E. & Mishkin, M. (1970) Evidence for behavioral impairment following prefrontal lobectomy in the infant monkey. Journal of Comparative and Physiological Psychology 70(3):454–63.CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S., Funahashi, S. & Bruce, C. J. (1990) Neocortical memory circuits. Cold Spring Harbor Symposia on Quantitative Biology 55:1025–38.CrossRefGoogle ScholarPubMed
Goldstein, A. (2000) Addiction: From biology to drug policy. Oxford University Press.Google Scholar
Goodwin, D. W. & Gabrielli, W. F. (1997) Alcohol: Clinical aspects. In: Substance abuse: A comprehensive textbook, ed. Lowinson, J. H., Ruiz, P., Millman, R. B. & Langrod, J. G., pp. 142–48. Williams and Wilkins.Google Scholar
Goto, Y. & Grace, A. A. (2005a) Dopamine-dependent interactions between limbic and prefrontal cortical plasticity in the nucleus accumbens: Disruption by cocaine sensitization. Neuron 47(2):255–66.CrossRefGoogle ScholarPubMed
Goto, Y. & Grace, A. A. (2005b) Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior. Nature Neuroscience 8(6):805–12.CrossRefGoogle ScholarPubMed
Grant, J. E., Potenza, M. N., Hollander, E., Cunningham-Williams, R., Nurminen, T., Smits, G. & Kallio, A. (2006) Multicenter investigation of the opioid antagonist nalmefene in the treatment of pathological gambling. American Journal of Psychiatry 163(2):303–12.CrossRefGoogle ScholarPubMed
Grant, S., Contoreggi, C. & London, E. D. (2000) Drug abusers show impaired performance in a laboratory test of decision making. Neuropsychologia 38(8):1180–87.CrossRefGoogle Scholar
Grant, S., London, E. D., Newlin, D. B., Villemagne, V. L., Liu, X., Contoreggi, C., Phillips, R. L., Kimes, A. S. & Margolin, A. (1996) Activation of memory circuits during cue-elirefd cocaine craving. Proceedings of the National Academy of Sciences USA 93(21):12040–45.CrossRefGoogle ScholarPubMed
Gray, J. A. (1975) Elements of a two-process theory of learning. Academic Press.Google Scholar
Gray, J. A. & McNaughton, N. (2000) The neuropsychology of anxiety. Oxford University Press.Google ScholarPubMed
Greden, J. F. & Walters, A. (1997) Caffeine. In: Substance abuse: A comprehensive textbook, ed. Lowinson, J. H., Ruiz, P., Millman, R. B. & Langrod, J. G., pp. 294307. Williams and Wilkins.Google Scholar
Griffiths, M. D. (1994) The role of cognitive bias and skill in fruit machine gambling. British Journal of Psychology 85(3):351–70.CrossRefGoogle Scholar
Grimm, J. W., Hope, B. T., Wise, R. A. & Shaham, Y. (2001) Neuroadaptation: Incubation of cocaine craving after withdrawal. Nature 412:141–42.CrossRefGoogle ScholarPubMed
Grossberg, S. (1976) Adaptive pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors. Biological Cybernetics 23:121–34.CrossRefGoogle ScholarPubMed
Grossman, M. & Chaloupka, F. J. (1998) The demand for cocaine by young adults: A rational addiction approach. Journal of Health Economics 17:427–74.CrossRefGoogle ScholarPubMed
Guthrie, E. R. (1935) The psychology of learning. Harpers.Google Scholar
Gutkin, B. S., Dehaene, S. & Changeux, J.-P. (2006) A neurocomputational hypothesis for nicotine addiction. Proceedings of the National Academy of Sciences USA 103(4):1106–11.CrossRefGoogle ScholarPubMed
Haber, S. N., Fudge, J. L. & McFarland, N. R. (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. Journal of Neuroscience 20(6):2369–82.Google ScholarPubMed
Halikas, J. A. (1997) Craving. In: Substance abuse: A comprehensive textbook, 3rd edition, ed. Lowinson, J. H., Ruiz, P., Millman, R. B. & Langrod, J. G., pp. 8590. Williams and Wilkins.Google Scholar
Hanson, K., Allen, S., Jensen, S. & Hatsukami, D. (2003) Treatment of adolescent smokers with the nicotine patch. Nicotine and Tobacco Research 5(4):515–26.CrossRefGoogle ScholarPubMed
Harris, A. C. & Gewirtz, J. C. (2005) Acute opioid dependence: Characterizing the early adaptations underlying drug withdrawal. Psychopharmacology 178(4):353–66.CrossRefGoogle ScholarPubMed
Hasselmo, M. E. (1993) Acetylcholine and learning in a cortical associative memory. Neural Computation 5:3244.CrossRefGoogle Scholar
Hasselmo, M. E. & Bower, J. M. (1993) Acetylcholine and memory. Trends in Neurosciences 16(6):218–22.CrossRefGoogle ScholarPubMed
Hastie, R. (2001) Problems for judgment and decision making. Annual Review of Psychology 52:653–83.CrossRefGoogle ScholarPubMed
Hauser, K. F., McLaughlin, P. J. & Zagon, I. S. (1987) Endogenous opioids regulate dendritic growth and spine formation in developing rat brain. Brain Research 416(1):157–61.CrossRefGoogle ScholarPubMed
Hauser, K. F., McLaughlin, P. J. & Zagon, I. S. (1989) Endogenous opioid systems and the regulation of dendritic growth and spine formation. Journal of Comparative Neurology 281(1):1322.CrossRefGoogle ScholarPubMed
Hebb, D. O. (1949/2002) The organization of behavior. Erlbaum. (Original work published in 1949)Google Scholar
Heishman, S. J. & Henningfield, J. E. (2000) Tolerance to repeated nicotine administration on performance, subjective, and physiological responses in nonsmokers. Psychopharmacology 152(3):321–34.CrossRefGoogle ScholarPubMed
Hemby, S., Martin, T., Co, C., Dworkin, S. & Smith, J. (1995) The effects of intravenous heroin administration on extracellular nucleus accumbens dopamine concentrations as determined by in vivo microdialysis. The Journal of Pharmacology and Experimental Therapeutics 273(2):591–98.Google ScholarPubMed
Herrnstein, R. J. (1997) The matching law. Harvard University Press.Google ScholarPubMed
Hertz, J., Krogh, A. & Palmer, R. G. (1991) Introduction to the theory of neural computation. Addison-Wesley.Google Scholar
Herz, A. (1997) Endogenous opioid systems and alcohol addiction. Psychopharmacology 129:99111.CrossRefGoogle ScholarPubMed
Herz, A. (1998) Opioid reward mechanisms: A key role in drug abuse? Canadian Journal of Physiology and Pharmacology 76(3):252–58.CrossRefGoogle ScholarPubMed
Heyman, G. M. (1996) Resolving the contradictions of addiction. Brain and Behavioral Sciences 19(4):561–74.CrossRefGoogle Scholar
Heyman, G. M. (2000) An economic approach to animal models of alcoholism. Alcohol Research and Health 24(2):132–39.Google ScholarPubMed
Higgins, S. T., Alessi, S. M. & Dantona, R. L. (2002) Voucher-based incentives: A substance abuse treatment innovation. Addictive Behaviors 27:887910.CrossRefGoogle ScholarPubMed
Hikosaka, O., Miyashita, K., Miyachi, S., Sakai, K. & Lu, X. (1998) Differential roles of the frontal cortex, basal ganglia, and cerebellum in visuomotor sequence learning. Neurobiology of Learning and Memory): 70(1–2):137–49.CrossRefGoogle ScholarPubMed
Hikosaka, O., Nakahara, H., Rand, M. K., Sakai, K., Lu, X., Nakamura, K., Miyachi, S. & Doya, K. (1999) Parallel neural networks for learning sequential procedures. Trends in Neurosciences 22(10):464–71.CrossRefGoogle ScholarPubMed
Hikosaka, O., Nakamura, K. & Nakahara, H. (2006) Basal ganglia orient eyes to reward. Journal of Neurophysiology 95:567–84.CrossRefGoogle Scholar
Hiroi, N. & Agatsuma, S. (2005) Genetic susceptibility to substance dependence. Molecular Psychiatry 10:336–44.CrossRefGoogle ScholarPubMed
Hirsh, R. (1974) The hippocampus and contextual retrieval of information from memory: A theory. Behavioral Biology 12:421–44.CrossRefGoogle ScholarPubMed
Hoffmann, K. L. & McNaughton, B. L. (2002) Coordinated reactivation of distributed memory traces in primate neocortex. Science 297(5589):2070–73.CrossRefGoogle Scholar
Holden, C. (2001) “Behavioral” addictions: Do they exist? Science 294:980–82.CrossRefGoogle ScholarPubMed
Holland, P. C. & Rescorla, R. A. (1975) The effect of two ways of devaluing the unconditioned stimulus after first- and second-order appetitive conditioning. Journal of Experimental Psychology: Animal Behavior Processes 1:355–63.Google Scholar
Holland, P. C. & Straub, J. J. (1979) Differential effects of two ways of devaluing the unconditioned stimulus after Pavlovian appetitive conditioning. Journal of Experimental Psychology: Animal Behavior Processes 5:6578.Google ScholarPubMed
Hommer, D. W. (1999) Functional imaging of craving. Alcohol Research and Health 23(3):187–96.Google ScholarPubMed
Hopfield, J. J. (1982) Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences USA 79:2554–58.CrossRefGoogle ScholarPubMed
Houk, J. C., Adams, J. L. & Barto, A. G. (1995) A model of how the basal ganglia generate and use neural signals that predict reinforcement. In: Models of information processing in the basal ganglia, ed. Houk, J. C., Davis, J. L. & Beiser, D. G., pp. 249–70. MIT Press.Google Scholar
Hu, D. & Amsel, A. (1995) A simple test of the vicarious trial-and-error hypothesis of hippocampal function. Proceedings of the National Academy of Sciences, USA 92:55065509.CrossRefGoogle ScholarPubMed
Hu, D., Xu, X. & Gonzalez-Lima, F. (2006) Vicarious trial-and-error behavior and hippocampal cytochrome oxidase activity during Y-maze discrimination learning in the rat. International Journal of Neuroscience 116(3):265–80.CrossRefGoogle ScholarPubMed
Huang, Y.-Y., Kandel, E. R., Vashavsky, L., Brandon, E. P., Qi, M., Idzerda, R. L., McKnight, G. S. & Bourtchouladze, R. (1995) A genetic test of the effects of mutations in PKA on mossy fiber LTP and its relation to spatial and contextual learning. Cell 83:1211–22.CrossRefGoogle Scholar
Hughes, J. R. & Hatsukami, D. (1986) Signs and symptoms of tobacco withdrawal. Archives of General Psychiatry 43(3):289–94.CrossRefGoogle ScholarPubMed
Hull, C. L. (1943) Principles of behavior. Appleton-Century-Crofts.Google Scholar
Hull, C. L. (1952) A behavior system: An introduction to behavior theory concerning the individual organism. Yale University Press.Google Scholar
Hunt, W. A. (1998) Pharmacology of alcohol. In: Handbook of substance abuse: Neurobehavioral pharmacology, ed. Tarter, R. E., Ammerman, R. T. & Ott, P. J., pp. 722. Plenum.CrossRefGoogle Scholar
Hurd, Y. L. & Herkenham, M. (1993) Molecular alterations in the neostriatum of human cocaine addicts. Synapse 13(4):357–69.CrossRefGoogle ScholarPubMed
Hursh, S. R. (1991) Behavioral economics of drug self-administration and drug abuse policy. Journal of Experimental Analysis of Behavior 56(2):377–93.CrossRefGoogle ScholarPubMed
Hursh, S. R., Galuska, C. M., Winger, G. & Woods, J. H. (2005) The economics of drug abuse: A quantitative assessment of drug demand. Molecular Interventions 5:2028.CrossRefGoogle ScholarPubMed
Husain, M., Parton, A., Hodgson, T. L., Mort, D. & Rees, G. (2003) Self-control during response conflict by human supplementary eye field. Nature Neuroscience 6:117–18.CrossRefGoogle ScholarPubMed
Hyman, S. E. (2005) Addiction: A disease of learning and memory. American Journal of Psychiatry 162:1414–22.CrossRefGoogle ScholarPubMed
Ikemoto, S. & Panksepp, J. (1999) The role of nucleus accumbens dopamine in motivated behavior: A unifying interpretation with special reference to reward-seeking. Brain Research Reviews 31(1):641.CrossRefGoogle ScholarPubMed
Ikemoto, S., Qin, M. & Liu, Z.-H. (2006) Primary reinforcing effects of nicotine are triggered from multiple regions both inside and outside the ventral tegmental area. Journal of Neuroscience 26:723–30.CrossRefGoogle ScholarPubMed
Irvin, J. E. & Brandon, T. H. (2000) The increasing recalcitrance of smokers in clinical trials. Nicotine and Tobacco Research 2(1):7984.Google ScholarPubMed
Irvin, J. E., Hendricks, P. S. & Brandon, T. H. (2003) The increasing recalcitrance of smokers in clinical trials: II. Pharmacotherapy trials. Nicotine and Tobacco Research 5(1):2735.CrossRefGoogle ScholarPubMed
Isoda, M. & Hikosaka, O. (2007) Switching from automatic to controlled action by monkey medial frontal cortex. Nature Neuroscience 10:240–48.CrossRefGoogle ScholarPubMed
Ito, R., Dalley, J. W., Howes, S. R., Robbins, T. W. & Everitt, B. J. (2000) Dissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats. Journal of Neuroscience 20(19):7489–95.Google ScholarPubMed
Ito, R., Dalley, J. W., Robbins, T. W. & Everitt, B. J. (2002) Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. Journal of Neuroscience 22(14):6247–53.Google ScholarPubMed
Itoh, H., Nakahara, H., Hikosaka, O., Kawagoe, R., Takikawa, Y. & Aihara, K. (2003) Correlation of primate caudate neural activity and saccade parameters in reward-oriented behavior. Journal of Neurophysiology 89(4):1774–83.CrossRefGoogle ScholarPubMed
Iversen, S. D. & Mishkin, M. (1970) Perseverative interference in monkeys following selective lesions of the inferior prefrontal convexity. Experimental Brain Research 11(4):376–86.CrossRefGoogle ScholarPubMed
Jackson, G. M., Jackson, S. R., Harrison, J., Henderson, L. & Kennard, C. (1995) Serial reaction time learning and Parkinson's disease: Evidence for a procedural learning deficit. Neuropsychologia 33(5):577–93.CrossRefGoogle ScholarPubMed
Jaffe, J. H. (1992) Current concepts of addiction. In: Research publications: Association for research in nervous and mental disease, vol. 70, ed. O'Brien, C. P. & Jaffe, J. H., pp. 121. Raven.Google Scholar
Jaffe, J. H., Knapp, C. M. & Ciraulo, D. A. (1997) Opiates: Clinical aspects. In: Substance abuse: A comprehensive textbook, ed. Lowinson, J. H., Ruiz, P., Millman, R. B. & Langrood, J. G., pp. 158–66. Williams and Wilkins.Google Scholar
Jensen, O. & Lisman, J. E. (1998) An oscillatory short-term memory buffer model can account for data on the Sternberg task. Journal of Neuroscience 18(24):10688–99.Google ScholarPubMed
Jensen, O. & Lisman, J. E. (2005) Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer. Trends in Neurosciences 28(2):6772.CrossRefGoogle ScholarPubMed
Jentsch, J. D., Olausson, P., Garza, R. D. L. & Taylor, J. R. (2002) Impairments of reversal learning and response perseveration after repeated, intermittent cocaine administrations to monkeys. Neuropsychologia 26:183–90.Google ScholarPubMed
Jentsch, J. D. & Taylor, J. R. (1999) Impulsivity resulting from frontostriatal dysfunction in drug abuse: Implications for the control of behavior by reward-related stimuli. Psychopharmacology 146:373–90.CrossRefGoogle ScholarPubMed
Jog, M. S., Kubota, Y., Connolly, C. I., Hillegaart, V. & Graybiel, A. M. (1999) Building neural representations of habits. Science 286:1746–49.CrossRefGoogle ScholarPubMed
Johanson, C.-E. & Fischman, M. W. (1989) The pharmacology of cocaine related to its abuse. Pharmacological Reviews 41(1):352.Google ScholarPubMed
Johnson, A. & Redish, A. D. (2005) Hippocampal replay contributes to within session learning in a temporal difference reinforcement learning model. Neural Networks 18(9):1163–71.CrossRefGoogle Scholar
Johnson, A. & Redish, A. D. (2007) Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. Journal of Neuroscience 27(45):12176–89.CrossRefGoogle Scholar
Johnson, S. W. & North, R. A. (1992) Opioids exref dopamine neurons by hyperpolarization of local interneurons. Journal of Neuroscience 12:483–88.Google ScholarPubMed
Jones, B. T., Corbin, W. & Fromme, K. (2001) A review of expectancy theory and alcohol consumption. Addiction 96:5772.CrossRefGoogle ScholarPubMed
Jung, M. W., Qin, Y., McNaughton, B. L. & Barnes, C. A. (1998) Firing characteristics of deep layer neurons in prefrontal cortex in rats performing spatial working memory tasks. Cerebral Cortex 8:437–50.CrossRefGoogle ScholarPubMed
Kahneman, D. & Frederick, S. (2002) Representativeness revisited: Attribute substitution in intuitive judgment. In: Heuristics and biases: The psychology of intuitive judgment, ed. Gilovich, T., Griffin, D. & Kahneman, D., pp. 4981. Cambridge University Press.CrossRefGoogle Scholar
Kahneman, D., Slovic, P. & Tversky, A., eds. (1982) Judgement under uncertainty: Heuristics and biases. Cambridge University Press.CrossRefGoogle Scholar
Kahneman, D. & Tversky, A. eds. (2000) Choices, values, and frames. Cambridge University Press.Google Scholar
Kalivas, P. W., Peters, J. & Knackstedt, L. (2006) Animal models and brain circuits in drug addiction. Molecular Interventions 6:339–44.CrossRefGoogle ScholarPubMed
Kalivas, P. W. & Volkow, N. D. (2005) The neural basis of addiction: A pathology of motivation and choice. American Journal of Psychiatry 162(8):1403–13.CrossRefGoogle Scholar
Kalivas, P. W., Volkow, N. D. & Seamans, J. (2005) Unmanageable motivation in addiction: A pathology in prefrontal-accumbens glutamate transmission. Neuron 45(5):647–50.CrossRefGoogle ScholarPubMed
Katz, J. L. & Higgins, S. T. (2003) The validity of the reinstatement model of craving and relapse. Psychopharmacology 168:2130.CrossRefGoogle ScholarPubMed
Kawagoe, R., Takikawa, Y. & Hikosaka, O. (2004) Reward-predicting activity of dopamine and caudate neurons – a possible mechanism of motivational control of saccadic eye movement. Journal of Neurophysiology 91(2):1013–24.CrossRefGoogle ScholarPubMed
Kelley, A. E. (1999a) Functional specificity of ventral striatal compartments in appetitive behaviors. Annals of the New York Academy of Sciences 877:7190.CrossRefGoogle ScholarPubMed
Kelley, A. E. (1999b) Neural integrative activities of nucleus accumbens subregions in relation to learning and motivation. Psychobiology 27(2):198213.Google Scholar
Kelley, A. E. (2004a) Memory and addiction: Shared neural circuitry and molecular mechanisms. Neuron 44:161–79.CrossRefGoogle ScholarPubMed
Kelley, A. E. & Berridge, K. C. (2002) The neuroscience of natural rewards: Relevance to addictive drugs. Journal of Neuroscience 22(9):3306–11.Google ScholarPubMed
Kelley, A. E., Bakshi, V. P., Haber, S. N., Steininger, T. L., Will, M. J. & Zhang, M. (2002) Opioid modulation of taste hedonics within the ventral striatum. Physiology and Behavior 76(3):365–77.CrossRefGoogle ScholarPubMed
Kenny, P. J. & Markou, A. (2005) Conditioned nicotine withdrawal profoundly decreases the activity of brain reward systems. Journal of Neuroscience 25(26):6208–12.CrossRefGoogle ScholarPubMed
Kentros, C. G., Agnihotri, N. T., Streater, S., Hawkins, R. D. & Kandel, E. R. (2004) Increased attention to spatial context increases both place field stability and spatial memory. Neuron 42:283–95.CrossRefGoogle ScholarPubMed
Kermadi, I. & Joseph, J. P. (1995) Activity in the caudate nucleus of monkey during spatial sequencing. Journal of Neurophysiology 74(3):911–33.Google ScholarPubMed
Kermadi, I., Jurquet, Y., Arzi, M. & Joseph, J. (1993) Neural activity in the caudate nucleus of monkeys during spatial sequencing. Experimental Brain Research 94:352–56.CrossRefGoogle ScholarPubMed
Kesner, R. P., Farnsworth, G. & DiMattia, B. V. (1989) Double dissociation of egocentric and allocentric space following medial prefrontal and parietal cortex lesions in the rat. Behavioral Neuroscience 103(5):956–61.CrossRefGoogle ScholarPubMed
Kiefer, F. & Mann, K. (2005) New achievements and pharmacotherapeutic approaches in the treatment of alcohol dependence. European Journal of Pharmacology 526(1–3):163–71.CrossRefGoogle ScholarPubMed
Kieffer, B. L. (1999) Opioids: First lessons from knockout mice. Trends in Pharmacological Sciences 20(1):1926.CrossRefGoogle ScholarPubMed
Killcross, S. & Coutureau, E. (2003) Coordination of actions and habits in the medial prefrontal cortex of rats. Cerebral Cortex 13(8):400408.CrossRefGoogle ScholarPubMed
Kirby, K. N., Petry, N. M. & Bickel, W. K. (1999) Heroin addicts have higher discount rates for delayed rewards than non-drug-using controls. Journal of Experimental Psychology: General 128(1):7887.CrossRefGoogle ScholarPubMed
Kiyatkin, E. A. (1994) Behavioral significance of phasic changes in mesolimbic dopamine-dependent electrochemical signal associated with heroin self-injections. Journal of Neural Transmission, General Section 96(3):197214.CrossRefGoogle ScholarPubMed
Kiyatkin, E. A. & Gratton, A. (1994) Electrochemical monitoring of extracellular dopamine in nucleus accumbens of rats lever-pressing for food. Brain Research 652:225–34.CrossRefGoogle Scholar
Kiyatkin, E. A. & Rebec, G. V. (1997) Activity of presumed dopamine neurons in the ventral tegmental area during heroin self-administration. NeuroReport 8(11):2581–85.CrossRefGoogle ScholarPubMed
Kiyatkin, E. A. & Rebec, G. V. (2001) Impulse activity of ventral tegmental area neurons during heroin self-administration in rats. Neuroscience 102(3):565–80.CrossRefGoogle ScholarPubMed
Kleber, H. D., Califano, J. A. & Demers, J. C. (1997) Clinical and societal implications of drug legalization. In: Substance abuse: A comprehensive textbook, ed. Lowinson, J. H., Ruiz, P., Millman, R. B. & Langrod, J. G., pp. 855–64. Williams and Wilkins.Google Scholar
Knopman, D. S. & Nissen, M. J. (1987) Implicit learning in patients with probable Alzheimer's disease. Neurology 37(5):784–88.CrossRefGoogle ScholarPubMed
Knopman, D. S. & Nissen, M. J. (1991) Procedural learning is impaired in Huntington's disease: Evidence from the serial reaction time task. Neuropsychologia 29(3):245–54.CrossRefGoogle ScholarPubMed
Knowlton, B. J., Squire, L. R. & Gluck, M. A. (1994) Probabilistic classification learning in amnesia. Learning and Memory 1(2):106–20.Google ScholarPubMed
Koene, R. A., Gorchetchnikov, A., Cannon, R. C. & Hasselmo, M. E. (2003) Modeling goal-directed spatial navigation in the rat based on physiological data from the hippocampal formation. Neural Networks 16(5–6):577–84.CrossRefGoogle ScholarPubMed
Kohonen, T. (1984) Self-organization and associative memory. Springer-Verlag.Google Scholar
Kolb, B. (1990) Prefrontal cortex. In: The cerebral cortex of the rat, ed. Kolb, B. & Tees, R. C., pp. 437–58. MIT Press.Google ScholarPubMed
Koob, G. F. & Bloom, F. E. (1988) Cellular and molecular mechanisms of drug dependence. Science 242:715–23.CrossRefGoogle ScholarPubMed
Koob, G. F. & Le Moal, M. (1997) Drug abuse: Hedonic homeostatic dysregulation. Science 278(5335):5258.CrossRefGoogle ScholarPubMed
Koob, G. F. & Le Moal, M. (2001) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24(2):97129.CrossRefGoogle ScholarPubMed
Koob, G. F. & Le Moal, M. (2005) Plasticity of reward neurocircuitry and the ‘dark side’ of drug addiction. Nature Neuroscience 8(11):1442–44.CrossRefGoogle ScholarPubMed
Koob, G. F. & Le Moal, M. (2006) Neurobiology of addiction. Elsevier Academic.Google ScholarPubMed
Kreek, M. J., Nielsen, D. A., Butelman, E. R. & LaForge, K. S. (2005) Genetic influences on impulsivity, risk taking, stress responsivity and vulnerability to drug abuse and addiction. Nature Neuroscience 8:1450–57.CrossRefGoogle ScholarPubMed
Kuhar, M. J., Ritz, M. C. & Sharkey, J. (1988) Cocaine receptors on dopamine transporters mediate cocaine-reinforced behavior. In: Mechanisms of cocaine abuse and toxicity, ed. Clouet, D., Asghar, K. & Brown, R., pp. 1422. National Institute on Drug Abuse.Google Scholar
Laing, C. R. & Chow, C. C. (2001) Stationary bumps in networks of spiking neurons. Neural Computation 13(7):1473–14.CrossRefGoogle ScholarPubMed
Langer, E. J. & Roth, J. (1975) Heads I win, tails it's chance: The illusion of control as a function of the sequence of outcomes in a purely chance task. Journal of Personality and Social Psychology 32(6):951–55.CrossRefGoogle Scholar
Lavoie, A. M. & Mizumori, S. J. Y. (1994) Spatial-, movement- and reward-sensitive discharge by medial ventral striatum neurons in rats. Brain Research 638:157–68.CrossRefGoogle Scholar
Leri, F., Bruneau, J. & Stewart, J. (2003) Understanding polydrug use: Review of heroin and cocaine co-use. Addiction 98(1):723.CrossRefGoogle ScholarPubMed
LeSage, M. G., Burroughs, D., Dufek, M., Keyler, D. E. & Pentel, P. R. (2004) Reinstatement of nicotine self-administration in rats by presentation of nicotine-paired stimuli, but not nicotine priming. Pharmacology, Biochemistry, and Behavior 79(3):507–13.CrossRefGoogle Scholar
Lesieur, H. (1977) The chase: Career of the compulsive gambler. Anchor.Google Scholar
Letchworth, S. R., Nader, M. A., Smith, H. R., Friedman, D. P. & Porrino, L. J. (2001) Progression of changes in dopamine transporter binding site density as a result of cocaine self-administration in rhesus monkeys. Journal of Neuroscience 21(8):27992807.Google ScholarPubMed
Levine, A. S. & Billington, C. J. (2004) Opioids as agents of reward-related feeding: A consideration of the evidence. Physiology and Behavior 82:5761.CrossRefGoogle Scholar
Levy, W. B. (1996) A sequence predicting CA3 is a flexible associator that learns and uses context to solve hippocampal-like tasks. Hippocampus 6(6):579–91.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Levy, W. B., Sanyal, A., Rodriguez, P., Sullivan, D. W. & Wu, X. B. (2005) The formation of neural codes in the hippocampus: Trace conditioning as a prototypical paradigm for studying the random recoding hypothesis. Biological Cybernetics 92:409–26.CrossRefGoogle ScholarPubMed
Li, Y., Acerbo, M. J. & Robinson, T. E. (2004) The induction of behavioural sensitization is associated with cocaine-induced structural plasticity in the core (but not shell) of the nucleus accumbens. European Journal of Neuroscience 20(6):1647–54.CrossRefGoogle ScholarPubMed
Liao, D., Lin, H., Law, P. Y. & Loh, H. H. (2005) Mu-opioid receptors modulate the stability of dendritic spines. Proceedings of the National Academy of Sciences, USA 102(5):1725–30.CrossRefGoogle ScholarPubMed
Lisman, J. E. & Grace, A. A. (2005) The hippocampal-VTA loop: Controlling the entry of information into long-term memory. Neuron 46(5):703–13.CrossRefGoogle ScholarPubMed
Littleton, J. (1998) Neurochemical mechanisms underlying alcohol withdrawal. Alcohol Research and Health 22(1):1324.Google ScholarPubMed
Liu, J.-L., Liu, J.-T., Hammit, J. K. & Chou, S.-Y. (1999) The price elasticity of opium in Taiwan, 1914–1942. Journal of Health Economics 18:795810.CrossRefGoogle Scholar
Ljungberg, T., Apicella, P. & Schultz, W. (1992) Responses of monkey dopamine neurons during learning of behavioral reactions. Journal of Neurophysiology 67(1):145–63.Google ScholarPubMed
Lowinson, J. H., Ruiz, P., Millman, R. B. & Langrod, J. G., eds. (1997) Substance abuse: A comprehensive textbook, 3rd edition.Williams and Wilkins.Google Scholar
Lubman, D. I., Peters, L. A., Mogg, K., Bradley, B. P. & Deakin, J. F. (2000) Attentional bias for drug cues in opiate dependence. Psychological Medicine 30:169–75.CrossRefGoogle ScholarPubMed
Lubman, D. I., Yücel, M. & Pantelis, C. (2004) Addiction, a condition of compulsive behaviour? Neuroimaging and neuropsychological evidence of inhibitory dysregulation. Addiction 99:14911502.CrossRefGoogle ScholarPubMed
MacCoun, R. J. (1993) Drugs and the law: A psychological analysis of drug prohibition. Psychological Bulletin 113(3):497512.CrossRefGoogle Scholar
MacKillop, J., Anderson, E. J., Castelda, B. A., Mattson, R. E. & Donovick, P. J. (2006) Convergent validity of measures of cognitive distortions, impulsivity, and time perspective with pathological gambling. Psychology of Addictive Behaviors 20(1):7579.CrossRefGoogle ScholarPubMed
MacKillop, J. & Monti, P. M. (2007) Advances in the scientific study of craving for alcohol and tobacco. In: Translation of addiction science into practice, ed. Miller, P. M. & Kavanagh, D., Ch. 10, pp. 187–207. Elsevier.Google Scholar
Mackintosh, N. J. (1974) The psychology of animal learning. Academic Press.Google Scholar
Maddahian, E., Newcomb, M. D. & Bentler, P. M. (1986) Adolescents' substance use: Impact of ethnicity, income, and availability. Advances in Alcohol and Substance Abuse 5(3):6378.CrossRefGoogle ScholarPubMed
Madden, G. J., Bickel, W. K. & Critchfield, T., eds. (in press) Impulsivity: Theory, science, and neuroscience of discounting. APA Books.Google Scholar
Madden, G. J., Bickel, W. K. & Jacobs, E. A. (1999) Discounting of delayed rewards in opioid-dependent outpatients exponential or hyperbolic discounting functions? Experimental and Clinical Psychopharmacology 7(3):284–93.CrossRefGoogle ScholarPubMed
Madden, G. J., Petry, N. M., Badger, G. J. & Bickford, W. K. (1997) Impulsive and self-control choices in opioid-dependent patients and non-drug-using control patients: Drug and monetary rewards. Experimental and Clinical Psychopharmacology 5(3):256–62.CrossRefGoogle ScholarPubMed
Mansvelder, H. D. & McGehee, D. S. (2000) Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron 27:349–57.CrossRefGoogle ScholarPubMed
Mansvelder, H. D. & McGehee, D. S. (2002) Cellular and synaptic mechanisms of nicotine addiction. Journal of Neurobiology 53(4):606–17.CrossRefGoogle ScholarPubMed
Mark, T. L., Woody, G. E., Juday, T. & Kleber, H. D. (2001) The economic costs of heroin addiction in the United States. Drug and Alcohol Dependence 61(2):195206.CrossRefGoogle ScholarPubMed
Marks, M. J., Pauly, J. R., Gross, S. D., Deneris, E. S., Hermans-Borgmeyer, I., Heinemann, S. F. & Collins, A. C. (1992) Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment. Journal of Neuroscience 12:2765–84.Google ScholarPubMed
Marr, D. (1971) Simple memory: A theory of archicortex. Philosophical Transactions of the Royal Society of London 262(841):2381.CrossRefGoogle ScholarPubMed
Martin, P. D. (2001) Locomotion towards a goal alters the synchronous firing of neurons recorded simultaneously in the subiculum and nucleus accumbens of rats. Behavioral Brain Research 124(1):1928.CrossRefGoogle ScholarPubMed
Martin, P. D. & Ono, T. (2000) Effects of reward anticipation, reward presentation, and spatial parameters on the firing of single neurons recorded in the subiculum and nucleus accumbens of freely moving rats. Behavioural Brain Research 116:2338.CrossRefGoogle ScholarPubMed
Martinez, D., Narendran, R., Foltin, R. W., Slifstein, M., Hwang, D.-R., Broft, A., Huang, Y., Cooper, T. B., Fischman, M. W., Kleber, H. D. & Laruelle, M. (2007) Amphetamine-induced dopamine release: Markedly blunted in cocaine dependence and predictive of the choice to self-administer cocaine. American Journal of Psychiatry 164(4):622–29.CrossRefGoogle ScholarPubMed
Mas-Nieto, M., Wilson, J., Cupo, A., Roques, B. P. & Noble, F. (2002) Chronic morphine treatment modulates the extracellular levels of endogenous enkephalins in rat brain structures involved in opiate dependence: A microdialysis study. Journal of Neuroscience 22:1034–41.Google Scholar
Matsumoto, N., Hanakawa, T., Maki, S., Graybiel, A. M. & Kimura, M. (1999) Role of nigrostriatal dopamine system in learning to perform sequential motor tasks in a predictive manner. Journal of Neurophysiology 82(2):978–98.Google Scholar
Matthes, H. W. D., Maldonado, R., Simonin, F., Valverde, O., Slowe, S., Kitchen, I., Befort, K., Dierich, A., Meur, M. L., Dolĺe, P., Tzavara, E., Hanoune, J., Roques, B. P. & Kieffer, B. L. (1996) Loss of morphine-induced analgesia, reward effect, and withdrawal symptoms in mice lacking the μ-opioid-receptor gene. Nature 383:819–23.CrossRefGoogle ScholarPubMed
Mazur, J. E. (2001) Hyperbolic value addition and general models of animal choice. Psychological Review 108(1):96112.CrossRefGoogle ScholarPubMed
McCaul, M. E. & Petry, N. M. (2003) The role of psychosocial treatments in pharmacotherapy for alcoholism. The American Journal on Addictions 12:S41S52.CrossRefGoogle ScholarPubMed
McClure, S. M., Berns, G. S. & Montague, P. R. (2003) Temporal prediction errors in a passive learning task activate human striatum. Neuron 38(2):339–46.CrossRefGoogle Scholar
McClure, S. M., Laibson, D. I., Loewenstein, G. & Cohen, J. D. (2004) Separate neural systems value immediate and delayed monetary rewards. Science 306(5695):503507.CrossRefGoogle ScholarPubMed
McDonald, R. J. & White, N. M. (1994) Parallel information processing in the water maze: Evidence for independent memory systems involving dorsal striatum and hippocampus. Behavioral and Neural Biology 61:260–70.CrossRefGoogle ScholarPubMed
McFarland, K. & Kalivas, P. W. (2001) The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior. Journal of Neuroscience 21(21):8655–63.Google ScholarPubMed
McFarland, K., Lapish, C. C. & Kalivas, P. W. (2003) Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. Journal of Neuroscience 23(8):3531–37.Google ScholarPubMed
McGeorge, A. J. & Faull, R. L. (1989) The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29(3):503–37.CrossRefGoogle ScholarPubMed
Meunzinger, K. F. (1938) Vicarious trial and error at a point of choice. I. A general survey of its relation to learning efficiency. Journal of Genetic Psychology 53:7586.Google Scholar
Meyer, R. & Mirin, S. (1979) The heroin stimulus. Plenum.CrossRefGoogle Scholar
Milad, M. R. & Quirk, G. J. (2002) Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420:7074.CrossRefGoogle ScholarPubMed
Miles, F. J., Everitt, B. J. & Dickinson, A. (2003) Oral cocaine seeking by rats: Action or habit? Behavioral Neuroscience 117(5):927–38.CrossRefGoogle ScholarPubMed
Mirenowicz, J. & Schultz, W. (1994) Importance of unpredictability for reward responses in primate dopamine neurons. Journal of Neurophysiology 72(2):1024–27.Google ScholarPubMed
Mishkin, M. & Appenzeller, T. (1987) The anatomy of memory. Scientific American 256(6):8089.CrossRefGoogle Scholar
Mishkin, M., Malamut, B. & Bachevalier, J. (1984) Memories and habits: Two neural systems. In: Neurobiology of learning and memory, ed. Lynch, G., McGaugh, J. L. & Weinberger, N. M., pp. 6577. nGuilford.Google Scholar
Miyachi, S., Hikosaka, O., Miyashita, K., Kárádi, Z. & Rand, M. K. (1997) Differential roles of monkey striatum in learning of sequential hand movement. Experimental Brain Research 115:15.CrossRefGoogle ScholarPubMed
Miyazaki, K., Mogi, E., Araki, N. & Matsumoto, G. (1998) Reward-quality dependent anticipation in rat nucleus accumbens. NeuroReport 9:3943–48.Google Scholar
Moak, D. H. & Anton, R. F. (1999) Alcohol. In: Addictions: A comprehensive textbook, ed. McCrady, B. S. & Epstein, E. E., pp. 7595. Oxford University Press.Google Scholar
Mogenson, G. J. (1984) Limbic-motor integration – with emphasis on initiation of exploratory and goal-directed locomotion. In: Modulation of sensorimotor activity during alterations in behavioral states, ed. Bandler, R., pp. 121–38. Liss.Google Scholar
Mogenson, G. J., Jones, D. L. & Yim, C. Y. (1980) From motivation to action: Functional interface between the limbic system and the motor system. Progress in Neurobiology 14:6997.CrossRefGoogle ScholarPubMed
Montague, P. R., Dayan, P., Person, C. & Sejnowski, T. J. (1995) Bee foraging in uncertain environments using predictive Hebbian learning. Nature 377(6551):725–28.CrossRefGoogle ScholarPubMed
Montague, P. R., Dayan, P. & Sejnowski, T. J. (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning. Journal of Neuroscience 16(5):1936–47.Google ScholarPubMed
Monti, P. M. & MacKillop, J. (2007) Advances in the treatment of craving for alcohol and tobacco. In: Translation of addiction science into practice, ed. Miller, P. M. & Kavanagh, D., Ch. 11, pp. 209–35. Elsevier.Google Scholar
Morgan, D., Grant, K. A., Gage, H. D., Mach, R. H., Kaplan, J. R., Prioleau, O., Nader, S. H., Buchheimer, N., Ehrenkaufer, R. L. & Nader, M. A. (2002) Social dominance in monkeys: Dopamine D2 receptors and cocaine self-administration. Nature Neuroscience 5(2):169–74.CrossRefGoogle ScholarPubMed
Morris, R. G. M., Garrud, P., Rawlins, J. N. P. & O'Keefe, J. (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–83.CrossRefGoogle ScholarPubMed
Mucha, R. F. & Herz, A. (1985) Motivational properties of kappa and mu opioid receptor agonists studied with place and taste preference conditioning. Psychopharmacology 86:274–80.CrossRefGoogle ScholarPubMed
Munn, N. L. (1950) Handbook of psychological research on the rat. Houghton Mifflin.Google Scholar
Murphy, B. L., Arnsten, A. F. T., Goldman-Rakic, P. S. & Roth, R. H. (1996) Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. Proceedings of the National Academy of Sciences, USA 93(3):1325–29.CrossRefGoogle ScholarPubMed
Mushiake, H., Saito, M., Sakamoto, K., Itoyama, Y. & Tanji, J. (2006) Activity in the lateral prefrontal cortex reflects multiple steps of future events in action plans. Neuron 50(4):631–41.CrossRefGoogle ScholarPubMed
Myers, K. M. & Davis, M. (2002) Behavioral and neural analysis of extinction. Neuron 36(4):567–84.CrossRefGoogle ScholarPubMed
Myers, K. M. & Davis, M. (2007) Mechanisms of fear extinction. Molecular Psychiatry 12:120–50.CrossRefGoogle ScholarPubMed
Nadel, L. (1994) Multiple memory systems: What and why, an update. In: Memory systems 1994, ed. Schacter, D. L. & Tulving, E., pp. 3964. MIT Press.Google Scholar
Nadel, L. & Bohbot, V. (2001) Consolidation of memory. Hippocampus 11:5660.3.0.CO;2-O>CrossRefGoogle Scholar
Nadel, L. & Moscovitch, M. (1997) Memory consolidation, retrograde amnesia and the hippocampal complex. Current Opinion in Neurobiology 7:217–27.CrossRefGoogle ScholarPubMed
Nakahara, H., Itoh, H., Kawagoe, R., Takikawa, Y. & Hikosaka, O. (2004) Dopamine neurons can represent context-dependent prediction error. Neuron 41:269–80.CrossRefGoogle ScholarPubMed
Negus, S., Henriksen, S., Mattox, A., Pasternak, G., Portoghese, P., Takemori, A., Weinger, M. & Koob, G. (1993) Effect of antagonists selective for mu, delta and kappa opioid receptors on the reinforcing effects of heroin in rats. The Journal of Pharmacology and Experimental Therapeutics 265(3):1245–52.Google ScholarPubMed
Nehlig, A. (1999) Are we dependent upon coffee and caffeine? A review on human and animal data. Neuroscience and Biobehavioral Reviews 23(4):563–76.CrossRefGoogle ScholarPubMed
Nehlig, A. & Boyet, S. (2000) Dose-response study of caffeine effects on cerebral functional activity with a specific focus on dependence. Brain Research 858(1):7177.CrossRefGoogle ScholarPubMed
Nelson, A. & Killcross, S. (2006) Amphetamine exposure enhances habit formation. Journal of Neuroscience 26(14):3805–12.CrossRefGoogle ScholarPubMed
Nicola, S. M. & Malenka, R. C. (1998) Modulation of synaptic transmission by dopamine and norepinephrine in ventral but not dorsal striatum. Journal of Neurophysiology 79:1768–76.Google Scholar
Nilsson, O. G., Shapiro, M. L., Gage, F. H., Olton, D. S. & Bjorklund, A. (1987) Spatial learning and memory following fimbria-fornix transection and grafting of fetal septal neurons to the hippocampus. Experimental Brain Research 67:195215.CrossRefGoogle ScholarPubMed
Nishioku, T., Shimazoe, T., Yamamoto, Y., Nakanishi, H. & Watanabe, S. (1999) Expression of long-term potentiation of the striatum in methamphetamine-sensitized rats. Neuroscience Letters 268(2):8184.CrossRefGoogle ScholarPubMed
Nissen, M. J. & Bullemer, P. (1987) Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology 19:132.CrossRefGoogle Scholar
Nissen, M. J., Knopman, D. S. & Schacter, D. L. (1987) Neurochemical dissociation of memory systems. Neurology 37(5):789–94.CrossRefGoogle ScholarPubMed
Niv, Y., Daw, N. D., Joel, D. & Dayan, P. (2007) Tonic dopamine: Opportunity costs and the control of response vigor. Psychopharmacology 191(3):507–20.CrossRefGoogle ScholarPubMed
Nurnberger, J. I. & Bierut, L. (2007) Seeking the connections: Alcoholism and our genes. Scientific American 296(4):4653.CrossRefGoogle ScholarPubMed
O'Brien, C. P. (2005) Anticraving medications for relapse prevention: A possible new class of psychoactive medications. American Journal of Psychiatry 162:1423–31.CrossRefGoogle ScholarPubMed
O'Brien, C. P., Childress, A. R., McLellan, A. T. & Ehrman, R. (1992) A learning model of addiction. In: Research publications: Association for research in nervous and mental disease, vol. 70, ed. O'Brien, C. P. & Jaffe, J. H., pp. 157–77. Raven.Google Scholar
O'Brien, C. P., Testa, T., O'Brien, T. J., Brady, J. P. & Wells, B. (1977) Conditioned narcotic withdrawal in humans. Science 195:10001002.CrossRefGoogle ScholarPubMed
O'Brien, C. P., Volpicelli, L. A. & Volpicelli, J. R. (1996) Naltrexone in the treatment of alcoholism: A clinical review. Alcohol 13(1):3539.CrossRefGoogle ScholarPubMed
O'Doherty, J. P. (2004) Reward representations and reward-related learning in the human brain: Insights from neuroimaging. Current Opinion in Neurobiology 14:769–76.CrossRefGoogle ScholarPubMed
O'Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K. & Dolan, R. J. (2004) Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304(5669):452–54.CrossRefGoogle ScholarPubMed
O'Keefe, J. & Nadel, L. (1978) The hippocampus as a cognitive map. Clarendon Press.Google ScholarPubMed
O'Tuatheigh, C. M. P., Salum, C., Young, A. M. J., Pickering, A. D., Joseph, M. H. & Moran, P. M. (2003) The effect of amphetamine on Kamin blocking and overshadowing. Behavioral Pharmacology 14:315–22.CrossRefGoogle Scholar
Odum, A. L., Madden, G. J. & Bickel, W. K. (2002) Discounting of delayed health gains and losses by current, never-and ex-smokers of cigarettes. Nicotine and Tobacco Research 4:295303.CrossRefGoogle Scholar
Oei, T. P. S. & Baldwin, A. R. (2002) Expectancy theory: A two-process model of alcohol use and abuse. Journal of Studies on Alcohol 55:525–34.CrossRefGoogle ScholarPubMed
Olmstead, M. C., Lafond, M. V., Everitt, B. J. & Dickinson, A. (2001) Cocaine seeking by rats is a goal-directed action. Behavioral Neuroscience 115(2):394402.CrossRefGoogle ScholarPubMed
Oscar-Berman, M. & Marinkovic, K. (2003) Alcoholism and the brain: An overview. Alcohol Research and Health 27(2):125–34.Google ScholarPubMed
Ostlund, S. & Balleine, B. W. (2007) Orbitofrontal cortex mediates outcome encoding in Pavlovian but not instrumental conditioning. Journal of Neuroscience 27(18):4819–25.CrossRefGoogle Scholar
Owen, A. M. (1997) Cognitive planning in humans: Neuropsychological, neuroanatomical and neuropharmacological perspectives. Progress in Neurobiology 53(4):431–50.CrossRefGoogle ScholarPubMed
Packard, M. G. (1999) Glutamate infused post-training into the hippocampus or caudate-putamen differentially strengthens place and response learning. Proceedings of the National Academy of Sciences, USA 96(22):12881–86.CrossRefGoogle ScholarPubMed
Packard, M. G. & McGaugh, J. L. (1992) Double dissociation of fornix and caudate nucleus lesions on acquisition of two water maze tasks: Further evidence for multiple memory systems. Behavioral Neuroscience 106(3):439–46.CrossRefGoogle ScholarPubMed
Packard, M. G. & McGaugh, J. L. (1996) Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiology of Learning and Memory 65:6572.CrossRefGoogle ScholarPubMed
Padoa-Schioppa, C. & Assad, J. A. (2006) Neurons in the orbitofrontal cortex encode economic value. Nature 441:223–26.CrossRefGoogle ScholarPubMed
Paine, T. A., Dringenberg, H. C. & Olmstead, M. C. (2003) Effects of chronic cocaine on impulsivity: Relation to cortical serotonin mechanisms. Behavioural Brain Research 147(1–2):135–47.CrossRefGoogle ScholarPubMed
Pan, W.-X., Schmidt, R., Wickens, J. R. & Hyland, B. I. (2005) Dopamine cells respond to predicted events during classical conditioning: Evidence for eligibility traces in the reward-learning network. Journal of Neuroscience 25(26):6235–42.CrossRefGoogle ScholarPubMed
Paré, D., Quirk, G. J. & Ledoux, J. E. (2004) New vistas on amygdala networks in conditioned fear. Journal of Neurophysiology 92:19.CrossRefGoogle ScholarPubMed
Parke, J. & Griffiths, M. (2004) Gambling addiction and the evolution of the “near miss.” Addiction Research and Theory 12(5):407–11.CrossRefGoogle Scholar
Pavlides, C. & Winson, J. (1989) Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes. Journal of Neuroscience 9(8):2907–18.Google ScholarPubMed
Pavlov, I. (1927) Conditioned reflexes. Oxford University Press.Google ScholarPubMed
Pennartz, C. M. A., Groenewegen, H. J. & Lopes da Silva, F. H. (1994) The nucleus accumbens as a complex of functionally distinct neuronal ensembles: An integration of behavioural, electrophysiological, and anatomical data. Progress in Neurobiology 42:719–61.CrossRefGoogle ScholarPubMed
Pennartz, C. M. A., Lee, E., Verheul, J., Lipa, P., Barnes, C. A. & McNaughton, B. L. (2004) The ventral striatum in off-line processing: Ensemble reactivation during sleep and modulation by hippocampal ripples. Journal of Neuroscience 24(29):6446–56.CrossRefGoogle ScholarPubMed
Peoples, L. L., Uzwiak, A. J., Gee, F. & West, M. O. (1999) Tonic firing of rat nucleus accumbens neurons: Changes during the first two weeks of daily cocaine self-administration sessions. Brain Research 822:231–36.CrossRefGoogle ScholarPubMed
Perkins, K. A. (2001) Reinforcing effects of nicotine as a function of smoking status. Experimental and Clinical Psychopharmacology 9 (8):250.CrossRefGoogle ScholarPubMed
Perkins, K. A., Grobe, J. E., Weiss, D., Fonte, C. & Caqquila, A. (1996) Nicotine preference in smokers as a function of smoking abstinence. Pharmacology Biochemistry and Behavior 55(2):257–63.CrossRefGoogle ScholarPubMed
Perry, J. L., Larson, E. B., German, J. P., Madden, G. J. & Carroll, M. E. (2005) Impulsivity (delay discounting) as a predictor of acquisition of IV cocaine self-administration in female rats. Psychopharmacology 178(2–3):193201.CrossRefGoogle ScholarPubMed
Petry, N. M. (2001) Pathological gamblers, with and without substance abuse disorders, discount delayed rewards at high rates. Journal of Abnormal Psychology 110(3):482–87.CrossRefGoogle ScholarPubMed
Petry, N. M. & Bickel, W. K. (1998) Polydrug abuse in heroin addicts: A behavioral economic analysis. Addiction 93(3):321–35.CrossRefGoogle ScholarPubMed
Petry, N. M., Bickel, W. K. & Arnett, M. (1998) Shortened time horizons and insensitivity to future consequences in heroin addicts. Addiction 93(5):729–38.CrossRefGoogle ScholarPubMed
Phelps, E. A. & LeDoux, J. E. (2005) Contributions of the amygdala to emotion processing: From animal models to human behavior. Neuron 48(2):175–87.CrossRefGoogle ScholarPubMed
Phillips, P. E. M., Stuber, G. D., Heien, M. L. A. V., Wightman, R. M. & Carelli, R. M. (2003) Subsecond dopamine release promotes cocaine seeking. Nature 422:614–18.CrossRefGoogle ScholarPubMed
Picconi, B., Centonze, D., Håkansson, K., Bernardi, G., Greengard, P., Fisone, G., Cenci, M. A. & Calabresi, P. (2003) Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nature Neuroscience 6(5):501506.Google ScholarPubMed
Pidoplichko, V. I., DeBiasi, M., Williams, J. T. & Dani, J. A. (1997) Nicotine activates and desensitizes midbrain dopamine neurons. Nature 390:401404.Google ScholarPubMed
Plassmann, H., O'Doherty, J. & Rangel, A. (2007) Orbitofrontal cortex encodes willingness to pay in everyday economic transactions. Journal of Neuroscience 27(37):9984–88.CrossRefGoogle ScholarPubMed
Poldrack, R. A., Clark, J., Paré-Blagoev, E. J., Shohamy, D., Moyano, J. C., Myers, C. & Gluck, M. A. (2001) Interactive memory systems in the human brain. Nature 414:546–50.CrossRefGoogle ScholarPubMed
Poldrack, R. A. & Packard, M. G. (2003) Competition among multiple memory systems: Converging evidence from animal and human studies. Neuropsychologia 41:245–51.CrossRefGoogle Scholar
Porrino, L. J., Daunais, J. B., Smith, H. R. & Nader, M. A. (2004a) The expanding effects of cocaine: Studies in a nonhuman primate model of cocaine self-administration. Neuroscience and Biobehavioral Reviews 27(8):813–20.CrossRefGoogle Scholar
Porrino, L. J., Lyons, D., Smith, H. R., Daunais, J. B. & Nader, M. A. (2004b) Cocaine self-administration produces a progressive involvement of limbic, association, and sensorimotor striatal domains. Journal of Neuroscience 24(14):3554–62.CrossRefGoogle ScholarPubMed
Potegal, M. (1972) The caudate nucleus egocentric localization system. Acta Neurobiological Experiments 32:479–94.Google ScholarPubMed
Potenza, M. N. (2006) Should addictive disorders include non-substance-related conditions? Addiction 101(S1):142–51.CrossRefGoogle ScholarPubMed
Potenza, M. N., Kosten, T. R. & Rounsaville, B. J. (2001) Pathological gambling. Journal of the American Medical Association 286(2):141–44.CrossRefGoogle ScholarPubMed
Poulos, C. X., Le, A. D. & Parker, J. L. (1995) Impulsivity predicts individual susceptibility to high levels of alcohol self-administration. Behavioral Pharmacology 6(8):810–14.CrossRefGoogle ScholarPubMed
Preuschoff, K., Bossaerts, P. & Quartz, S. R. (2006) Neural differentiation of expected reward and risk in human subcortical structures. Neuron 51:381–90.CrossRefGoogle Scholar
Quirk, G. J., Garcia, R. & González-Lima, F. (2006) Prefrontal mechanisms in extinction of conditioned fear. Biological Psychiatry 60(4):337–43.CrossRefGoogle Scholar
Ragozzino, M. E., Detrick, S. & Kesner, R. P. (1999) Involvement of the prelimbic-infralimbic areas of the rodent prefrontal cortex in behavioral flexibility for place and response learning. Journal of Neuroscience 19:4585–94.Google ScholarPubMed
Ragozzino, M. E., Jih, J. & Tzavos, A. (2002a) Involvement of the dorsomedial striatum in behavioral flexibility: Role of muscarinic cholinergic receptors. Brain Research 953(1–2):205–14.CrossRefGoogle ScholarPubMed
Ragozzino, M. E., Ragozzino, K. E., Mizumori, S. J. Y. & Kesner, R. P. (2002b) The role of the dorsomedial striatum in behavioral flexibility for response and visual cue discrimination learning. Behavioral Neuroscience 116:105–15.CrossRefGoogle ScholarPubMed
Ranaldi, R., Bauco, P., McCormick, S., Cools, A. R. & Wise, R. A. (2001) Equal sensitivity to cocaine reward in addiction-prone and addiction-resistant rat genotypes. Behavioural Pharmacology 12(6–7):527–34.CrossRefGoogle ScholarPubMed
Rand, M. K., Hikosaka, O., Miyachi, S., Lu, X. & Miyashita, K. (1998) Characteristics of a long-term procedural skill in the monkey. Experimental Brain Research 118:293–97.CrossRefGoogle ScholarPubMed
Rand, M. K., Hikosaka, O., Miyachi, S., Lu, X., Nakamura, K., Kitaguchi, K. & Shimo, Y. (2000) Characteristics of sequential movements during early learning period in monkeys. Experimental Brain Research 131:293304.CrossRefGoogle ScholarPubMed
Rapoport, A. & Wallsten, T. S. (1972) Individual decision behavior. Annual Review of Psychology 23:131–76.CrossRefGoogle Scholar
Raylu, N. & Oei, T. P. S. (2002) Pathological gambling. A comprehensive review. Clinical Psychology Review 22(7):1009–61.CrossRefGoogle ScholarPubMed
Redish, A. D. (1999) Beyond the cognitive map: From place cells to episodic memory. MIT Press.Google Scholar
Redish, A. D. (2004) Addiction as a computational process gone awry. Science 306(5703):1944–47.CrossRefGoogle ScholarPubMed
Redish, A. D., Jensen, S., Johnson, A. & Kurth-Nelson, Z. (2007) Reconciling reinforcement learning models with behavioral extinction and renewal: Implications for addiction, relapse, and problem gambling. Psychological Review 114(3):784805.CrossRefGoogle ScholarPubMed
Redish, A. D. & Johnson, A. (2007) A computational model of craving and obsession. Annals of the New York Academy of Sciences 1104(1):324–39.CrossRefGoogle ScholarPubMed
Redish, A. D. & Kurth-Nelson, Z. (in press) Neural models of temporal discounting. In: Impulsivity: Theory, science, and neuroscience of discounting, ed. Madden, G., Bickel, W. & Critchfield, T.. APA Books.Google Scholar
Redish, A. D., Rosenzweig, E. S., Bohanick, J. D., McNaughton, B. L. & Barnes, C. A. (2000) Dynamics of hippocampal ensemble realignment: Time vs. space. Journal of Neuroscience 20(24):9289–309.Google Scholar
Redish, A. D. & Touretzky, D. S. (1998) The role of the hippocampus in solving the Morris water maze. Neural Computation 10(1):73111.CrossRefGoogle ScholarPubMed
Rescorla, R. A. (1988) Pavlovian conditioning: It's not what you think it is. American Psychologist 43(3):151–60.CrossRefGoogle ScholarPubMed
Rescorla, R. A. & Wagner, A. R. (1972) A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In: Classical conditioning II: Current research and theory, ed. Black, A. H. & Prokesy, W. F., pp. 6499. Appleton Century Crofts.Google Scholar
Restle, F. (1957) Discrimination of cues in mazes: A resolution of the “place-vs-response” question. Psychological Review 64:217–28.CrossRefGoogle ScholarPubMed
Reynolds, B. R. (2006) A review of delay-discounting research with humans: Relations to drug use and gambling. Behavioural Pharmacology 17(8):651–67.CrossRefGoogle Scholar
Reynolds, J. N. J., Hyland, B. I. & Wickens, J. R. (2001) A cellular mechanism of reward-related learning. Nature 413:6770.CrossRefGoogle ScholarPubMed
Reynolds, J. N. J. & Wickens, J. R. (2002) Dopamine-dependent plasticity of corticostriatal synapses. Neural Networks 15(4–6):507–21.CrossRefGoogle ScholarPubMed
Rice, M. E. & Cragg, S. J. (2004) Nicotine enhances reward-related dopamine signals in striatum. Nature Neuroscience 7(6):583–84.CrossRefGoogle ScholarPubMed
Rich, E. & Knight, K. (1991) Artificial intelligence. McGraw-Hill.Google Scholar
Ritz, M. C., Lamb, R. J., Goldberg, S. R. & Kuhar, M. J. (1987) Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 237:1219–23.CrossRefGoogle ScholarPubMed
Robbins, T. W. & Everitt, B. J. (1999) Drug addiction: Bad habits add up. Nature 398(6728):567–70.CrossRefGoogle ScholarPubMed
Robbins, T. W. & Everitt, B. J. (2006) A role for mesencephalic dopamine in activation: Commentary on Berridge. Psychopharmacology 191(3):433–37.CrossRefGoogle ScholarPubMed
Robinson, T. E. (2004) Neuroscience: Addicted rats. Science 305(5686):951–53.CrossRefGoogle ScholarPubMed
Robinson, T. E. & Berridge, K. C. (1993) The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Research Reviews 18(3):247336.CrossRefGoogle Scholar
Robinson, T. E. & Berridge, K. C. (2001) Mechanisms of action of addictive stimuli: Incentive sensitization and addiction. Addiction 96:103–14.CrossRefGoogle Scholar
Robinson, T. E. & Berridge, K. C. (2003) Addiction. Annual Reviews of Psychology 54(1):2553.CrossRefGoogle ScholarPubMed
Robinson, T. E. & Berridge, K. C. (2004) Incentive-sensitization and drug “wanting” (Reply). Psychopharmacology 171:352–53.CrossRefGoogle Scholar
Robinson, T. E., Gorny, G., Mitton, E. & Kolb, B. (2001) Cocaine self-administration alters the morphology of dendrites and dendritic spines in the nucleus accumbens and neocortex. Synapse 39(3):257–66.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Robinson, T. E., Gorny, G., Savage, V. R. & Kolb, B. (2002) Widespread but regionally specific effects of experimenter- versus self-administered morphine on dendritic spines in the nucleus accumbens, hippocampus, and neocortex of adult rats. Synapse 46(4):271–79.CrossRefGoogle ScholarPubMed
Robinson, T. E. & Kolb, B. (1999) Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. European Journal of Neuroscience 11(5):15981604.CrossRefGoogle ScholarPubMed
Rodrigues, S. M., Schafe, G. E. & LeDoux, J. E. (2004) Molecular mechanisms underlying emotional learning and memory in the lateral amygdala. Neuron 44(1):7591.CrossRefGoogle ScholarPubMed
Roesch, M. R., Calu, D. J. & Schoenbaum, G. (2007) Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards. Nature Neuroscience 10:1615–24.CrossRefGoogle ScholarPubMed
Roitman, M. F., Stuber, G. D., Phillips, P. E. M., Wightman, R. M. & Carelli, R. M. (2004) Dopamine operates as a subsecond modulator of food seeking. Journal of Neuroscience 24(6):1265–71.CrossRefGoogle ScholarPubMed
Rose, J. E., Herskovic, J. E., Trilling, Y. & Jarvik, M. E. (1985) Transdermal nicotine reduces cigarette craving and nicotine preference. Clinical Pharmacology and Therapeutics 38(4):450–56.CrossRefGoogle ScholarPubMed
Rumelhart, D. E. & McClelland, J. L. (1986) Parallel distributed processing: Explorations in the microstructure of cognition. MIT Press.Google Scholar
Rushworth, M. F. S., Buckley, M. J., Behrens, T. E. J., Walton, M. E. & Bannerman, D. M. (2007) Functional organization of the medial frontal cortex. Current Opinion in Neurobiology 17(2):220–27.CrossRefGoogle ScholarPubMed
Russell, M. A. H. (1990) The nicotine addiction trap: A 40-year sentence for four cigarettes. British Journal of Addiction 85:293300.CrossRefGoogle ScholarPubMed
Russell, S. J. & Norvig, P. (2002) Artificial intelligence: A modern approach. Prentice Hall.Google Scholar
Saint-Cyr, J. A., Taylor, A. E. & Lang, A. E. (1988) Procedural learning and neostriatal dysfunction in man. Brain 111:941–59.CrossRefGoogle ScholarPubMed
Saitz, R. (1998) Introduction to alcohol withdrawal. Alcohol Research and Health 22(1):512.Google ScholarPubMed
Sakagami, M. & Pan, X. (2007) Functional role of the ventrolateral prefrontal cortex in decision making. Current Opinion in Neurobiology 17(2):228–33.CrossRefGoogle ScholarPubMed
Sakagami, M., Pan, X. & Uttl, B. (2006) Behavioral inhibition and prefrontal cortex in decision-making. Neural Networks 19(8):1255–65.CrossRefGoogle ScholarPubMed
Salamone, J. D. & Correa, M. (2002) Motivational views of reinforcement: Implications for understanding the behavioral functions of nucleus accumbens dopamine. Behavioural Brain Research 137(1–2):325.CrossRefGoogle ScholarPubMed
Salamone, J. D., Correa, M., Farrar, A. & Mingote, S. M. (2007) Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology 191(3):461–82.CrossRefGoogle ScholarPubMed
Salamone, J. D., Correa, M., Mingote, S. M. & Weber, S. M. (2005) Beyond the reward hypothesis: Alternative functions of nucleus accumbens dopamine. Current Opinion Pharmacology 5(1):3441.CrossRefGoogle ScholarPubMed
Samejima, K., Ueda, Y., Doya, K. & Kimura, M. (2005) Representation of action-specific reward values in the striatum. Science 310(5752):1337–40.CrossRefGoogle ScholarPubMed
Sanfey, A. G., Loewenstein, G., McClure, S. M. & Cohen, J. D. (2006) Neuroeconomics: Crosscurrents in research on decision-making. Trends in Cognitive Sciences 10(3):108–16.CrossRefGoogle Scholar
Sayette, M. A., Shiffman, S., Tiffany, S. T., Niaura, R. S., Martin, C. S. & Shadel, W. G. (2000) The measurement of drug craving. Addiction 95(Suppl. 2):S189S210.CrossRefGoogle ScholarPubMed
Schacter, D. L. (2001) The seven sins of memory. Houghton Mifflin.Google Scholar
Schmitz, J. M., Schneider, N. G. & Jarvik, M. E. (1997) Nicotine. In: Substance abuse: A comprehensive textbook, ed. Lowinson, J. H., Ruiz, P., Millman, R. B. & Langrod, J. G., pp. 276–94. Williams and Wilkins.Google Scholar
Schmitz, J. M., Stotts, A. L., Rhoades, H. M. & Grabowski, J. (2001) Naltrexone and relapse prevention treatment for cocaine-dependent patients. Addictive Behaviors 26(2):167–80.CrossRefGoogle ScholarPubMed
Schmitzer-Torbert, N. C. & Redish, A. D. (2002) Development of path stereotypy in a single day in rats on a multiple-T maze. Archives Italiennes de Biologie 140:295301.Google Scholar
Schmitzer-Torbert, N. C. & Redish, A. D. (2004) Neuronal activity in the rodent dorsal striatum in sequential navigation: Separation of spatial and reward responses on the multiple-T task. Journal of Neurophysiology 91(5):2259–72.CrossRefGoogle ScholarPubMed
Schneider, J. & Irons, R. (2001) Assessment and treatment of addictive sexual disorders: Relevance for chemical dependency relapse. Substance Use and Misuse 36(13):17951820.CrossRefGoogle Scholar
Schneider, W. & Chein, J. M. (2003) Controlled & automatic processing: Behavior, theory, and biological mechanisms. Cognitive Science 27(3):525–59.CrossRefGoogle Scholar
Schneider, W. & Shiffrin, R. M. (1977) Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review 84(1):166.CrossRefGoogle Scholar
Schoenbaum, G. & Roesch, M. (2005) Orbitofrontal cortex, associative learning, and expectancies. Neuron 47(5):633–36.CrossRefGoogle ScholarPubMed
Schoenbaum, G., Roesch, M. & Stalnaker, T. A. (2006a) Orbitofrontal cortex, decision making, and drug addiction. Trends in Neurosciences 29(2):116–24.CrossRefGoogle ScholarPubMed
Schoenbaum, G., Setlow, B., Saddoris, M. P. & Gallagher, M. (2006b) Encoding changes in orbitofrontal cortex in reversal-impaired aged rats. Journal of Neurophysiology 95(3):1509–17.CrossRefGoogle ScholarPubMed
Schoenbaum, G., Stalnaker, T. A. & Roesch, M. R. (2006c) Ventral striatum fails to represent bad outcomes after cocaine exposure. Society for Neuroscience Abstracts. Program No. 485.16.Google Scholar
Schoenbaum, G., Setlow, B. & Ramus, S. J. (2003) A systems approach to orbitofrontal cortex function: Recordings in rat orbitofrontal cortex reveal interactions with different learning systems. Behavioural Brain Research 146(1–2):1929.CrossRefGoogle ScholarPubMed
Schoenmakers, T., Wiers, R. W., Jones, B. T., Bruce, G. & Jansen, A. T. M. (2007) Attentional re-training decreases attentional bias in heavy drinkers without generalization. Addiction 102:399405.CrossRefGoogle ScholarPubMed
Schöne, H. (1984) Spatial orientation, trans. Strausfeld, C.. Princeton University Press.CrossRefGoogle ScholarPubMed
Schreiber, C. A. & Kahneman, D. (2000) Determinants of the remembered utility of aversive sounds. Journal of Experimental Psychology: General 129(1):2742.CrossRefGoogle ScholarPubMed
Schulteis, G., Heyser, C. J. & Koob, G. F. (1997) Opiate withdrawal signs precipitated by naloxone following a single exposure to morphine: Potentiation with a second morphine exposure. Psychopharmacology 129(1):5665.CrossRefGoogle ScholarPubMed
Schultz, W. (1998) Predictive reward signal of dopamine neurons. Journal of Neurophysiology 80:127.Google ScholarPubMed
Schultz, W. (2002) Getting formal with dopamine and reward. Neuron 36:241–63.CrossRefGoogle ScholarPubMed
Schultz, W., Apicella, P., Scarnati, E. & Ljungberg, T. (1992) Neuronal activity in monkey ventral striatum related to the expectation of reward. Journal of Neuroscience 12(12):4595–610.Google Scholar
Schultz, W. & Dickinson, A. (2000) Neuronal coding of prediction errors. Annual Review of Neuroscience 23(1):473500.CrossRefGoogle ScholarPubMed
Schultz, W., Dayan, P. & Montague, R. (1997) A neural substrate of prediction and reward. Science 275:1593–99.CrossRefGoogle ScholarPubMed
Schweighofer, N., Tanaka, S. C., Asahi, S., Okamoto, Y., Doya, K. & Yamawaki, S. (2004) An fMRI study of the delay discounting of reward after tryptophan depletion and loading: I. Decision-making. Society for Neuroscience Abstracts, Program Number 776.14.Google Scholar
Seamans, J. K., Gorelova, N., Durstewitz, D. & Yang, C. R. (2001) Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons. Journal of Neuroscience 21(10):3628–38.Google ScholarPubMed
Seamans, J. K. & Yang, C. R. (2004) The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Progress in Neurobiology 74:157.CrossRefGoogle ScholarPubMed
Self, D. W. & Nestler, E. J. (1998) Relapse to drug-seeking: Neural and molecular mechanisms. Drug and Alcohol Dependence 51:4960.CrossRefGoogle ScholarPubMed
Seymour, B., O'Doherty, J. P., Dayan, P., Koltzenburg, M., Jones, A. K., Dolan, R. J., Friston, K. J. & Frackowlak, R. S. (2004) Temporal difference models describe higher-order learning in humans. Nature 429:664–67.CrossRefGoogle ScholarPubMed
Shaham, Y., Erb, S. & Stewart, J. (2000) Stress-induced relapse to heroin and cocaine seeking in rats: A review. Brain Research Reviews 33:1333.CrossRefGoogle ScholarPubMed
Shaham, Y., Shalev, U., Lu, L., de Wit, H. & Stewart, J. (2003) The reinstatement model of drug relapse: History, methodology and major findings. Psychopharmacology 168:320.CrossRefGoogle ScholarPubMed
Shalev, U., Grimm, J. W. & Shaham, Y. (2002) Neurobiology of relapse to heroin and cocaine seeking: A review. Pharmacological Reviews 54(1):142.CrossRefGoogle ScholarPubMed
Shalev, U., Highfield, D., Yap, J. & Shaham, Y. (2000) Stress and relapse to drug seeking in rats: Studies on the generality of the effect. Psychopharmacology 150(3):337–46.CrossRefGoogle ScholarPubMed
Shippenberg, T. S., Chefer, V. I., Zapata, A. & Heidbreder, C. A. (2001) Modulation of the behavioral and neurochemical effects of psychostimulants by kappa-opioid receptor systems. Annals of the New York Academy of Sciences 937(1):5073.CrossRefGoogle Scholar
Siegel, S. (1988) Drug anticipation and the treatment of dependence. NIDA Research Monographs 84:124.Google ScholarPubMed
Simon, H. (1955) A behavioral model of rational choice. The Quarterly Journal of Economics 69:99118.CrossRefGoogle Scholar
Sinha, R. & O'Malley, S. (1999) Craving for alcohol: Findings from the clinic and the laboratory. Alcohol and Alcoholism 34(2):223–30.CrossRefGoogle ScholarPubMed
Slovic, P., Fischhoff, B. & Lichtenstein, S. (1977) Behavioral decision theory. Annual review of Psychology 28:139.CrossRefGoogle Scholar
Smith, M. A., Brandt, J. & Shadmehr, R. (2000) Motor disorder in Huntington's disease begins as a dysfunction in error feedback control. Nature 403:544–49.CrossRefGoogle ScholarPubMed
Solomon, R. L. & Corbit, J. D. (1973) An opponent-process theory of motivation: II. Cigarette addiction. Journal of Abnormal Psychology 81(2):158–71.CrossRefGoogle ScholarPubMed
Solomon, R. L. & Corbit, J. D. (1974) An opponent-process theory of motivation: I. Temporal dynamics of affect. Psychological Review 81(2):119–45.CrossRefGoogle ScholarPubMed
Sozou, P. D. (1998) On hyperbolic discounting and uncertain hazard rates. The Royal Society London B 265:2015–20.CrossRefGoogle Scholar
Squire, L. R. (1987) Memory and brain. Oxford University Press.Google ScholarPubMed
Squire, L. R., Cohen, N. J. & Nadel, L. (1984) The medial temporal region and memory consolidation: A new hypothesis. In: Memory consolidation: Psychobiology of cognition, ed. Weingartner, H. & Parker, E. S., pp. 185210. Erlbaum.Google Scholar
Stalnaker, T. A., Roesch, M. R., Franz, T. M., Burke, K. A. & Schoenbaum, G. (2006) Abnormal associative encoding in orbitofrontal neurons in cocaine-experienced rats during decision-making. European Journal of Neuroscience 24(9):2643–53.CrossRefGoogle ScholarPubMed
Stefani, M. R. & Moghaddam, B. (2006) Rule learning and reward contingency are associated with dissociable patterns of dopamine activation in the rat prefrontal cortex, nucleus accumbens, and dorsal striatum. Journal of Neuroscience 26(34):8810–18.CrossRefGoogle ScholarPubMed
Steiner, H. & Gerfen, C. R. (1998) Role of dynorphin and enkephalin in the regulation of striatal output pathways and behavior. Experimental Brain Research 123(1–2):6076.CrossRefGoogle ScholarPubMed
Stephens, D. W. & Krebs, J. R. (1987) Foraging theory. Princeton.Google Scholar
Stewart, R. B. & Li, T.-K. (1997) The neurobiology of alcoholism in genetically selected rat models. Alcohol Research and Health 21(2):169–76.Google ScholarPubMed
Stuber, G. D., Roitman, M. F., Phillips, P. E. M., Carelli, R. M. & Wightman, R. M. (2004) Rapid dopamine signaling in the nucleus accumbens during contingent and noncontingent cocaine administration. Neuropsychopharmacology pp. 111.Google ScholarPubMed
Stuber, G. D., Wightman, R. M. & Carelli, R. M. (2005) Extinction of cocaine self-administration reveals functionally and temporally distinct dopaminergic signals in the nucleus accumbens. Neuron 46:661–69.CrossRefGoogle ScholarPubMed
Sulzer, D., Sonders, M. S., Poulsen, N. W. & Galli, A. (2005) Mechanisms of neurotransmitter release by amphetamines: A review. Progress in Neurobiology 75(6):406–33.CrossRefGoogle ScholarPubMed
Suri, R. E. & Schultz, W. (1999) A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task. Neuroscience 91(3):871–90.CrossRefGoogle ScholarPubMed
Sutton, R. S. & Barto, A. G. (1998) Reinforcement learning: An introduction. MIT Press.Google Scholar
Swanson, L. W. (2000) Cerebral hemisphere regulation of motivated behavior. Brain Research 886(1–2):113–64.CrossRefGoogle ScholarPubMed
Swift, R. & Davidson, D. (1998) Alcohol hangover: Mechanisms and mediators. Alcohol Research and Health 22(1):5460.Google ScholarPubMed
Sylvain, C., Ladouceur, R. & Biosvert, J.-M. (1997) Cognitive and behavioral treatment of pathological gambling: A controlled study. Journal of Consulting and Clinical Psychology 65(5):727–32.CrossRefGoogle ScholarPubMed
Tanaka, S. C. (2002) Dopamine controls fundamental cognitive operations of multi-target spatial working memory. Neural Networks 15(4–6):573–82.CrossRefGoogle ScholarPubMed
Tanaka, S. C. (2006) Dopaminergic control of working memory and its relevance to schizophrenia: A circuit dynamics perspective. Neuroscience 139(1):153–71.CrossRefGoogle ScholarPubMed
Tanaka, S. C., Doya, K., Okada, G., Ueda, K., Okamoto, Y. & Yamawaki, S. (2004a) Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nature Neuroscience 7:887–93.CrossRefGoogle ScholarPubMed
Tanaka, S. C., Schweighofer, N., Asahi, S., Okamoto, Y. & Doya, K. (2004b) An fMRI study of the delay discounting of reward after tryptophan depletion and loading: II. Reward-expectation. Society for Neuroscience Abstracts, Program Number 776.17.Google Scholar
Tanda, G., Pontieri, F. E. & Chiara, G. D. (1997) Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common µ1 opioid receptor mechanism. Science 276(5321):2048–50.CrossRefGoogle ScholarPubMed
Tang, C., Pawlak, A.P., Volodymyr, P. & West, M. O. (2007) Changes in activity of the striatum during formation of a motor habit. European Journal of Neuroscience 25(4):9091252.CrossRefGoogle ScholarPubMed
Tarter, R. E., Ammerman, R. T. & Ott, P. J., eds. (1998) Handbook of substance abuse: Neurobehavioral pharmacology. Plenum.CrossRefGoogle Scholar
Thomas, M. J., Beurrier, C., Bonci, A. & Malenka, R. (2001) Long-term depression in the nucleus accumbens: A neural correlate of behavioral sensitization to cocaine. Nature Neuroscience 4(12):1217–23.CrossRefGoogle ScholarPubMed
Tiffany, S. T. (1990) A cognitive model of drug urges and drug-use behavior: Role of automatic and nonautomatic processes. Psychological Review 97(2):147–68.CrossRefGoogle Scholar
Tindell, A. J., Berridge, K. C. & Aldridge, J. W. (2004) Ventral pallidal representation of pavlovian cues and reward: Population and rate codes. Journal of Neuroscience 24(5):1058–69.CrossRefGoogle ScholarPubMed
Tindell, A. J., Smith, K. S., Pecina, S., Berridge, K. C. & Aldridge, J. W. (2006) Ventral pallidum firing codes hedonic reward: When a bad taste turns good. Journal of Neurophysiology 96(5):23992409.CrossRefGoogle ScholarPubMed
Tolman, E. C. (1938) The determiners of behavior at a choice point. Psychological Review 45(1):141.CrossRefGoogle Scholar
Tolman, E. C. (1939) Prediction of vicarious trial and error by means of the schematic sowbug. Psychological Review 46:318–36.