Skip to main content Accessibility help
×
Home
Hostname: page-component-846f6c7c4f-msmtk Total loading time: 0.577 Render date: 2022-07-06T14:31:57.363Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue

What are “normal movements” in atypical populations?

Published online by Cambridge University Press:  04 February 2010

Mark L. Latash
Affiliation:
Department of Kinesiology, Pennsylvania State University, University Park, PA 16802
J. Greg Anson
Affiliation:
School of Physical Education, University of Otago, Dunedin, New Zealand Electronic mail: mll@psu.edu;jganson@pooka.otago.ac.nz

Abstract

Redundancy of the motor control system is an important feature that gives the central control structures options for solving everyday motor problems. The choice of particular control patterns is based on priorities (coordinative rules) that are presently unknown. Motor patterns observed in unimpaired young adults reflect these priorities. We hypothesize that under certain atypical conditions, which may include disorders in perception of the environment and in decision making, structural or biochemical changes within the central nervous system (CNS), and/or structural changes of the effectors, the central nervous system may reconsider its priorities. A new set of priorities will reflect the current state of the system and may lead to different patterns of voluntary movement. Under such conditions, changed motor patterns should be considered not pathological but rather adaptive to a primary disorder and may even be viewed as optimal for a given state of the system of movement production. Therapeutic approaches should not be directed toward restoring the motor patterns to as close to “normal” as possible but rather toward resolving the original underlying problem. We illustrate this approach using, as examples, movements in amputees, in patients with Parkinson's disease, in patients with dystonia, and in persons with Down syndrome.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ada, L., Canning, C. G., Carr, J. H.. Kilbreath, S. L. & Shepherd, R. B. (1994) Task-specific training of reaching and manipulation. In: Insights into the reach to grasp movement, ed. Bennett, K. M. B. & Castiello, U.. Elsevier. [JHC]Google Scholar
Agid, Y., Cervera, P., Hirsch, E., Javoy-Agid, F., Lehericy, S., Raisman, R. & Rugerg, M. (1989) Biochemistry of Parkinson's disease 28 years later: A critical review. Movement Disorders 4:S126S144. [JMG]Google Scholar
Agostino, R., Berardelli, A., Formica, A., Accomero, N. & Manfredi, M. (1992) Sequential arm movements in patients with Parkinson’ s disease, Huntington’ s disease and dystonia. Brain 115:1481–95. [AB, DMC]Google Scholar
Alexander, G. E. & Crutcher, M. D. (1990) Functional architecture of basal ganglia circuits: Neural substrates of parallel processing. Trends in Neurosciences 13:266–71. [JMG]Google Scholar
Alexander, R. M. (1991) How dinosaurs ran. Scientific American 264(4):130136. [AWB]Google Scholar
Alexander, R. M. (1993) Optimization of structure and movement of the legs of animals. Journal of Biomechanics 26 Supplement 1:16. [AWB]Google Scholar
Alexander, R. M. & Jayes, A. S. (1983) A dynamic similarity hypothesis for the gaits of quadrupedal mammals. Journal of Zoology 222:471–78. [AWB]Google Scholar
Alexandrov, A., Frolov, A. & Massion, J. (1994) Voluntary forward bending movement in humans: A principal component analysis of axial synergies. In: Vestibular and neural fronts, ed. Taguthi, K., Igarashi, M. & Mozi, S.. Elsevier. [EVB]Google Scholar
Almeida, G. L., Aruin, A. S. & Latash, M. L. (1994a) Organization of a simple two-joint synergy in individuals with Down syndrome. Brazilian International Journal of Adapted Physical Education Research 1:141–42. [aMLL]Google Scholar
Almeida, G. L., Aruin, A. S. & Latash, M. L. (1994b) Organization of a simple, two-joint synergy in individuals with Down's syndrome. In: Motor control in Down's syndrome: Proceedings of the second international conference (11 19–20, 1994), ed. Latash, M. L.. Chicago, IL. [MGW]Google Scholar
Almeida, G. L., Corcos, D. M. & Latash, M. L. (1994) Practice and transfer effects during fast single joint elbow movements in individuals with Down syndrome. Physical Therapy 74:1000–16. [arMLL]Google Scholar
American Alliance for Health, Physical Education and Recreation (1952) Guiding principles for adapted physical education. Journal of Health, Physical Education, and Recreation 23:15. [CBW]Google Scholar
Andrews, C. J., Burke, D. & Lance, J. W. (1972) The response to muscle stretch and shortening in Parkinsonian rigidity. Brain 95:795812. [aMLL]Google Scholar
Angulo-Kinzler, R., Chapman, D., Ulrich, B. D. & Thelen, E. (1995) Context effects on the muscle activation patterns of newly walking infants. Paper presented at the annual meeting of die North American Society for the Psychology of Sport and Physical Activity, Asilomar, CA (06, 1995). [ET]Google Scholar
Anson, J. G. (1989) Down syndrome: Neuromotor programming and fractionated reaction time. In: Motor control in Down syndrome, ed. Latash, M. L.. Chicago: Rush Medical Center. [aMLL]Google Scholar
Anson, J. G. (1992) Neuromotor control and Down syndrome. In: Approaches to the study of motor control and learning, ed. Summers, J. J.. North-Holland. [aMLL]Google Scholar
Anson, J. G., Lockie, R. M. & Mawston, G. A. (1994) Downs syndrome: Persistence of distal-to-proximal sequencing. In: Motor control in Down's syndrome: Proceedings of the second international conference (11 19–20, 1994), ed. Latash, M. L.. Chicago, IL. [MGW]Google Scholar
Arbib, M. A. (1981) Perceptual structures and distributed motor control. In: Handbook of physiology, section 1: The nervous system, vol. 2, part 2, ed. Bethesda, MD: American Physiological Society. [aMLL]Google Scholar
Aruin, A. S., Almeida, G. L. & Latash, M. L. (1994) Anticipatory postural adjustments during predictable and self-inflicted perturbations in Down syndrome. In: Motor control in Down syndrome 2, ed. Latash, M. L.. Chicago: Rush University. [rMLL]Google Scholar
Ayres, A. J. (1972) Improving academic scores through sensory integration. Journal of Learning Disabilities 2:23. [MFL]Google Scholar
Balan, C. M. & Davis, W. E. (1992) Optimizing the involvement and performance of children with physical impairments in movement activities. Pediatric Exercise Science 4:236–48. [AWB]Google Scholar
Baldissera, F., Cavallari, P. & Tesio, L. (1994) Coordination of cyclic coupled movements of hand and foot in normal subjects and on the healthy side of hemiplegic patients. In: Interlimb coordination: Neural, dynamical, and cognitive constraints, ed. Swinnen, S. P., Massion, J., Heuer, H. & Casaer, P.. Academic Press. [SPS]Google Scholar
Barrett, J. (1986) 100 Wimbledon championships. Willow Books. [RSWM]Google Scholar
Bazalgette, D., Zattara, M., Bathien, N., Bouisset, S. & Rondot, P. (1986) Postural adjustments associated with rapid voluntary arm movements in patients with Parkinson's disease. Advances in Neurology 45:371–74. [aMLL]Google Scholar
Beek, P. J. (1989) Juggling dynamics. Amsterdam: Free University Press. [KMN]Google Scholar
Belenkii, V. Y., Gurfinkel, V. S. & Paltsev, Y. I. (1967) Elements of control of voluntary movements. Biophysics 12:135–41. [aMLL]Google Scholar
Benabid, A., Pollack, P., Gervason, C., Hoffman, D., Gao, D., Hommel, M., Perret, J. & DeRougemont, J. (1991) Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337:403–6. [CJW]Google Scholar
Benecke, R., Rothwell, J. C., Day, B. L., Dick, J. P.R. & Marsden, C. D. (1986) Performance of simultaneous movements in patients with Parkinson's disease. Brain 109:739–57. [AB]Google Scholar
Benecke, R., Rothwell, J. C., Day, B. L. & Mardsen, C. D. (1987a) Disturbance of sequential movements in patients with Parkinson's disease. Brain 110:361–79. [AB]Google Scholar
Berardelli, A., Dick, J. P. R., Rothwell, J. C., Day, B. L. & Marsden, C. D. (1986) Scaling of the size of the first agonist EMG burst during rapid wrist movements in patients with Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry 49:1273–79. [aMLL, AB]Google Scholar
Berardelli, A. & Hallett, M. (1984) Shortening reaction of human tibialis anterior. Neurology 34:242–46. [aMLL]Google Scholar
Berardelli, A., Rothwell, J. C., Day, B. L. & Marsden, C. D. (1984) Movements not involved in posture are abnormal in Parkinson's disease. Neuroscience Letters 47:4750. [aMLL, AB, DMC]Google Scholar
Berardelli, A., Sabra, A. F., Hallett, M., Berenberg, W. & Simon, S. R. (1983) Stretch reflexes of triceps surae in patients with upper motor neuron syndromes. Journal of Neurology, Neurosurgery, and Psychiatry 46:5460. [aMLL]Google Scholar
Bernstein, N. A. (1935) The problem of interrelation between correlation and localization. Archives of Biological Sciences 38:135. [aMLL]Google Scholar
Bernstein, N. A. (1967) The co-ordination and regulation of movements. Pergamon. [rMLL]Google Scholar
Bernstein, N. A. (1990) Physiology of movements and of activity. (Classics of Science series). Moscow: Nauka (in Russian). [rMLL]Google Scholar
Bernstein, N. A. (1991) On dexterity and its development. Moscow: Physical Culture and Sport Press (in Russian). [rMLL]Google Scholar
Biryukova, E. V., Roschin, V. Y., Frolov, A. A., Ioffe, M. E., Massion, J. & Dufosse, M. (1995b) Elbow joint stiffness dynamics during learning of posture maintenance in the process of arm unloading. The Fifteenth Congress of the ISB: Abstracts, ed. Hakkinen, K., Keskinen, K. L., Komi, P. V. & Mero, A.. Jyvaskyla, Finland: Gummerus Kirjapaino. [EVB]Google Scholar
Bobath, B. (1981) Abnormal postural of preflex activity caused by brain lesions. Heinemann. [JPS]Google Scholar
Bobath, B. (1990) Adult hemiplegia. Evaluation and treatment. 3d ed.Heinemann. [MFL]Google Scholar
Bohannon, R. W. (1993) Physical rehabilitation in neurologic diseases. Current Opinion in Neurology 6:765–72. [MM]Google Scholar
Bouisset, S. & Zattara, M. (1981) A sequence of postural movements precedes voluntary movements. Neuroscience Letters 22:263–70. [AB, SB]Google Scholar
Bouisset, S. & Zattara, M. (1983) Anticipatory postural movements related to a voluntary movement. In: Space Physiology. Toulouse: Cepadues Editions. [aMLL, SB]Google Scholar
Bouisset, S. & Zattara, M. (1990) Segmental movement as a perturbation to balance? Facts and concepts. In: Multiple muscle systems: Biomechanics and movement organization, ed. Winters, J. M. & Woo, S. L.-Y.. Springer-Verlag. [aMLL]Google Scholar
Bouisset, S., Do, M. C. & Zattara, M. (1992) Posturo-kinetic capacity assessed in paraplegics and Parkinsonians [from the Eleventh International Symposium of the Society for Postural and Gait Research, Portland, Oregon.] In: Posture and Gait: Control mechanics, vol. 2., ed. Woollacott, M. & Horak, F.. University of Oregon Books. [SB]Google Scholar
Brion, J.-P., Demeurisse, G. & Capon, A. (1989) Evidence of cortical reorganization in hemiparetic patients. Stroke 20:1079–84. [MFL]Google Scholar
Brown, J. E. & Frank, F. S. (1987) Influence of event anticipation of postural actions accompanying voluntary movement. Experimental Brain Research 67:645–50. [aMLL]Google Scholar
Brown, R. G. & Marsden, C. D. (1991) Dual task performance and processing resources in normal subjects and patients with Parkinson's disease. Brain 114:215–31. [aMLL]Google Scholar
Brunnstrom, S. (1970) Movement therapy in hemiplegia: A neurophysiological approach. Harper & Row. [MFL]Google Scholar
Buchanan, T. S., Almdale, D. P. J., Lewis, J. L. & Rymer, W. Z. (1986) Characteristics of synergetic relations during isometric contractions of human elbow muscles. Journal of Neurophysiology 56:1225–41. [aMLL]Google Scholar
Buchanan, T. S., Rovai, G. P. & Rymer, W. Z. (1989) Strategies for muscle activation during isometric torque generation at the human elbow, journal of Neurophysiology 39:925–35. [aMLL]Google Scholar
Buchman, A. S., Leurgans, S., Gottlieb, G. L., Chen, C.-H. & Corcos, D. M. (in preparation). The effect of aging on single joint flexion movements. [DMC]Google Scholar
Burleigh, A., Horak, F., Burchiel, K. & Nutt, J. (1993) Effects of thalamic stimulation on tremor, balance, and step initiation: A single subject study. Movement Disorders 8(4):519–24. [CJW]Google Scholar
Burton, A. W. & Davis, W. E. (1992) Optimizing the involvement and performance of children with physical impairments in movement activities. Pediatric Exercise Science 4:236–48. [AWB]Google Scholar
Burton, A. W., Greer, N. L. & Wiese-Bjornstal, D. M. (1993) Variations in grasping and throwing patterns as a function of ball size. Pediatric Exercise Science 5:2541. [AWB]Google Scholar
Butler, P., Thompson, N. & Major, R. (1992) Improvement in walking performance of children with cerebral palsy: Preliminary results. Developmental Medicine and Child Neurology 34:567–76. [CJW]Google Scholar
Capady, C. & Stein, R. B. (1986) Amplitude modulation of the soleus H-reflex in the human during walking and standing. Journal of Neurosdence 6:1308–13. [TK]Google Scholar
Capady, C. & Stein, R. B. (1987) Difference in the amplitude of the human soleus H-reflex during walking and running. Journal of Physiology 392:513–22. [TK]Google Scholar
Carr, J. H. & Shepherd, R. B. (1987a) A motor relearning programme for stroke. Butterworth-Heinemann. [JHC]Google Scholar
Carr, J. H. & Shepherd, R. B. (1987b) A motor learning model for rehabilitation. In: Movement science: Foundations for physical therapy in rehabilitation, ed. Carr, J. H., Shepherd, R. B., Gordon, J., Gentile, A. A.. & Held, J. M.. Heinemann. [JHC, MM]Google Scholar
Carr, J. H. & Shepherd, R. B. (1990) A motor learning model for the rehabilitation of the movement-disabled. In: Key issues in neurological physiotherapy, ed. Ada, A. & Canning, C. G.. Butterworth-Heinemann. [JHC]Google Scholar
Chan, C. W. Y. & Kearney, R. E. (1982) Is the functional stretch reflex servo controlled or preprogrammed? Electroencephalography and Clinical Neurophysiology 53:310–24. [aMLL]Google Scholar
Cody, F. W. J., MacDermott, N., Matthews, P. B. C. & Richardson, H. C. (1986) Observations on the genesis of the stretch reflex in Parkinson's disease. Brain 109:229–49. [aMLL]Google Scholar
Cohen, L. G., Bandinelli, S., Findley, T. W. & Hallett, M. (1991) Motor reorganization after upper limb amputation in humans: A study with focal magnetic stimulation. Brain 114:615–27. [aMLL]Google Scholar
Cole, K. J., Abbs, J. H. & Turner, G. S. (1988) Deficits in the production of grip force in Down Syndrome. Developmental Medicine and Child Neurology 30:752–58. [aMLL]Google Scholar
Corcos, D. M., Gottlieb, G. L., Latash, M. L., Almeida, G. L. & Agarwal, G. C. (1992) Electromechanical delay: An experimental artifact. Journal of Electromyography and Kinesiology 2:5968. [aMLL]Google Scholar
Cordo, P. J. & Nashner, L. M. (1982) Properties of postural adjustments associated with rapid arm movements. Journal of Neurophysiology 47:287302. [aMLL]Google Scholar
Crenna, P. & Frigo, C. (1987) Excitability of the soleus H-reflex are during walking and stepping in man. Experimental Brain Research 66:538–48. [TK]Google Scholar
Crenna, P., Frigo, C., Massion, J. & Pedotti, A. (1987) Forward and backward axial synergies in man. Experimenal Brain Research 65:538–48. [aMLL]Google Scholar
Curra, A., Modugno, N., Agostino, R., Manfredi, G. W., Accornero, N. & Manfredi, M. (1995) Sequential arm movements in normal subjects and patients with Parkinson's disease: The role of advance information. Journal of Neurology (Suppl. 2) 242(6):878. [AB]Google Scholar
Czerniecki, J. M., Gitter, A. & Munro, C. (1991) Joint moment and muscle power output characteristics of below knee amputees during running: The influence of energy storing prosthetic feet. Journal of Biomechanics 24:6375. [aMLL]Google Scholar
Davis, W. E. & Burton, A. W. (1991) Ecological task analysis: Translating movement behavior theory into practice. Adapted Physical Activity Quarterly 8:154–77. [[AWB]Google Scholar
Davis, W. E. & Van Emmerik, R. E. A. (1995) An ecological task analysis approach for understanding motor development in mental retardation: Research questions and strategies. In: Physical and motor development in persons with mental retardation, ed. Vermeer, A. & Davis, W. E.. Karger. [REAVE]Google Scholar
DeGuzman, G. C. & Kelso, J. A. S. (1991) Multifrequency behavioral patterns and the phase attractive circle map. Biological Cybernetics 64:485–95. [PJT]Google Scholar
Dick, J. P. R., Rothwell, J. C., Berardelli, A., Thompson, P. D., Gioux, M., Benecke, R., Day, B. L. & Marsden, C. D. (1986) Associated postural adjustments in Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry 49:1378–85. [aMLL]Google Scholar
Diener, H. C., Diehgans, J., Gusehlbauer, B., Bacher, M. & Langenbach, P. (1989) Disturbances of motor preparation in basal ganglia and cerebellar disorders. Progress in Brain Research 80:481–88. [aMLL]Google Scholar
Dietz, V. (1987) Role of peripheral afferents and spinal reflexes in normal and impaired human locomotion. Review of Neurology (Paris) 143:241–54. [JPS]Google Scholar
Draper, I. T. & Johns, R. S. (1964) The disorders of movement in Parkinsonism and the effect of drug treatment. Johns Hopkins Hospital Bulletin 115:465–80. [aMLL]Google Scholar
Dufosse, M., Hugon, M. & Massion, J. (1985) Postural forearm changes induced by predictable in time or voluntary triggered unloading in man. Experimental Brain Research 60:330–34. [aMLL]Google Scholar
Elliott, D. & Weeks, D. J. (1990) Cerebral specialization and the control of oral and limb movements for individuals with Down's syndrome. Journal of Motor Behavior 22:618. [aMLL]Google Scholar
Elliott, D., Weeks, D. J. & Jones, R. (1986) Lateral asymmetries in finger-tapping by adolescents and young adults widi Down's syndrome. American Journal of Mental Deficiency 90:472–75. [aMLL]Google Scholar
Epstein, C. J. (1987) Down syndrome. In: Encyclopedia of neurosdence, ed. Adelman, G.. Boston: Birkhauser. [aMLL]Google Scholar
Evarts, E. V., Teravainen, H. & Calne, D. B. (1981) Reaction time in Parkinson's disease. Brain 104:167–86. [aMLL]Google Scholar
Faglie Low, J. (1995) Historical and social foundations of practice. In: Occupational therapy for physical dysfunction, ed. Trombly, C.. Williams and Wilkins. [CBW]Google Scholar
Fahn, S. (1988) Concept and classification of dystonia. In: Dystonia 2: Advances in Neurology, vol. 50, ed. Fahn, S., Marsden, C. D. & Calne, D. B.. Raven. [arMLL]Google Scholar
Fahn, S. (1990) Akinesia. In: Motor disturbances II, ed. Beradelli, A., Benecke, R., Manfredi, M. & Marsdem, C. D.Pergamon. [aMLL]Google Scholar
Feldman, A. G. (1979) Central and peripheral mechanisms of motor control. Moscow: Nauka (in Russian). [EVB]Google Scholar
Feldman, A. G. (1980) Superposition of motor programs: 1. Rhythmic forearm movements in man. Neurosdence 5:8190. [EVB]Google Scholar
Feldman, A. G. (1986) Once more on the equilibrium-point hypothesis (model) for motor control. Journal of Motor Behavior 18:1754. [aMLL. rMLL]Google Scholar
Fikes, T. G., Klatzky, R. L. & Lederman, S. J. (1994) Effects of object texture on precontact movement time in human prehension. Journal of Motor Behavior 26:325–32. [RLK]Google Scholar
Fisk, J. D. & Goodale, M. A. (1988) The effects of unilateral brain damage on visually guided reaching: Hemispheric differences in the nature of the deficit. Experimental Brain Research 72:425–35. [MFL]Google Scholar
Fitts, P. M. (1954) The information capacity of the human motor system in controlling the amplitude of movements. Journal of Experimental Psychology 47:381391. [aMLL]Google Scholar
Flanagan, J. R., Feldman, A. G. & Ostry, D. J. (1993) Control of trajectory modifications in target-directed reaching. Journal of Motor Behavior 25:140–52. [rMLL]Google Scholar
Flanders, M. & Soeehting, J. F. (1990) Arm muscle activation for static forces in three-dimensional space. Journal of Neurophysiology 64:1818–37. [aMLL]Google Scholar
Flash, T. (1987) The control of hand equilibrium trajectories in multi-joint arm movements. Biological Cybernetics 57:257–74. [aMLL]Google Scholar
Flash, T. & Hogan, N. (1985) The coordination of arm movements: An experimentally confirmed mathematical model. Journal of Neuroscience 5:16881703. [arMLL]Google Scholar
Forssberg, H. (1985) Ontogeny of human loeomotor control: I. Infant stepping, supported locomotion, and transition to independent locomotion. Experimental Brain Besearch 57:480–93. [ET]Google Scholar
Forssberg, H., Johnels, B. & Steg, G. (1984) Is Parkinsonian gait caused by a regression to an immature walking pattern? Advances in Neurology 40:375–79. [ET]Google Scholar
Franck, J. I. (1980) Functional reorganization of cat somatic sensory-motor cortex (SmI) after selective dorsal root rhisotomies. Brain Research 186:458–62. [aMLL]Google Scholar
Frith, U. & Frith, C. D. (1974) Specific motor disabilities in Down's syndrome. Journal of Child Psychology and Psychiatry 15:293301. [aMLL]Google Scholar
Fuchs, S., Roby-Brami, A., Mokhtari, M. & Bussel, B., (1994) 3D method of recording reaching movements in normal and hemiplegic humans. European Journal of Neuroscience Supl. 7:14. [EVB]Google Scholar
Fuhr, P., Cohen, L. G., Dang, N., Findley, T. W., Haghighi, S., Oro, J. & Hallett, M. (1992) Physiological analysis of motor reorganization following lower limb amputation. Electroencephalography and Clinical Neurophysiology 85:5360. [aMLL]Google Scholar
Fukson, O. I., Berkinblit, M. B. & Feldman, A. G. (1980) The spinal frog takes into account the scheme of its body during the wiping reflex. Science 209:1261–63. [aMLL]Google Scholar
Geurts, A. & Mulder, T. (1992) Reorganization of postural control following lower limb amputation: Theoretical considerations and implications for rehabilitation. Physiotherapy Theory and Practice 8:145–57. [ASA]Google Scholar
Geurts, A. C. H. & Mulder, T. W. (1994) Attention demands in balance recovery following lower limb amputation. Journal of Motor Behavior 26:162–70. [JJS]Google Scholar
Ghez, C., Gordon, J. & Hening, W. (1988) Trajectory control in dystonia. In: Dystonia 2: Advances in neurology, vol. 50, ed. Fahn, S., Marsden, C. D. & Calne, D. B.. Raven. [aMLL]Google Scholar
Gielen, C. C. A. M. & van Ingen Schenau, G. J. (1992) The constrained control of force and position by multi-link manipulators. IEEE Transactions on Systems, Man and Cybernetics 22:1214–19. [CCAMG]Google Scholar
Gielen, S., van Ingen Schenau, G. J., Tax, T. & Theeuwen, M. (1990) The activation of mono- and bi-articular muscles in multi-joint movements. In: Multiple muscle systems. Biomechanics and movement organization, ed. Winters, J. M. & Woo, S. L.-Y.. Springer-Verlag. [aMLL]Google Scholar
Glass, L. & Mackey, M. C. (1988) From clocks to chaos: The rhythms of life. Princeton University Press. [PJT, REAVE]Google Scholar
Glendinning, D. S. & Enoka, R. M. (1994) Motor unit behavior in Parkinson's disease. Physical Therapy 74:6170. [aMLL]Google Scholar
Glickstein, M. & Stein, J. (1991) Paradoxical movements in Parkinson's disease. Trends in Neuroscience 14:480. [AB]Google Scholar
Gordon, J. (1987) Assumptions underlying physical therapy intervention: Theoretical and historical perspectives. In: Movement science: Foundations for physical therapy in rehabilitation, ed. Carr, J. & Sheppard, R.. Aspen. [JPS]Google Scholar
Gottlieb, G. L., Corcos, D. M. & Agarwal, G. C. (1989) Strategies for the control of voluntary movements with one mechanical degree of freedom. Behavioral and Brain Sciences 12:189250. [aMLL]Google Scholar
Gottlieb, G. L., Corcos, D. M., Agarwal, G. C. & Latash, M. L. (1990) Organizing principles for single joint movements: 3. The speed-insensitive strategy as default. Journal of Neurophysiology 63(3):625–36. [DMC]Google Scholar
Gurd, J. M. (1993) Studies of verbal fluency deficits in patients with Parkinson's disease. Unpublished thesis, University of Oxford. [JMG]Google Scholar
Gurd, J. M. & Marshall, J. C. (1995) Mechanisms of word-retrieval: Neuropsychological investigations of patients with Parkinson's disease. In: Speech and reading: Comparative approaches, ed. de Gelder, B. & Morais, H.. Erlbaum. [JMG]Google Scholar
Gutman, S. R., Gottlieb, G. L. & Corcos, D. M. (1992) Exponential model of a reaching movement trajectory with non-linear time. Comments in Theoretical Biology 2:357–84. [aMLL]Google Scholar
Haken, H., Kelso, J. A. S. & Bunz, H. (1985) A theoretical model of phase transitions in human hand movements. Biological Cybernetics 51:347–56. [PJT]Google Scholar
Hallett, M. (1993) Physiology of basal ganglia disorders: an overview. Canadian Journal of Neurological Science 20:177–83. [aMLL]Google Scholar
Hallett, M. & Khoshbin, S. (1980) A physiological mechanism of bradykinesia. Brain 103:301–14. [aMLL]Google Scholar
Halsband, U., Homberg, V. & Lange, H. J. (1990) Slowing of different types of voluntary movement in extrapyramidal disease: Fitts' law and idiographic writing. In: Motor disturbances 2, ed. Berardelli, A., Benecke, R., Manfredi, M. & Marsden, C. D.. Academic Press. [aMLL]Google Scholar
Hayashi, A., Kagamihara, Y., Nakajima, Y., Narabayashi, H., Okuma, Y. & Tanaka, R. (1988) Disorder in reciprocal innervation upon initiation of voluntary movement in patients with Parkinson's disease. Experimental Brain Research 70:437–40. [aMLL]Google Scholar
Heilman, K. M., Bowers, D., Watson, R. T. & Greer, M. (1976) Reaction time in Parkinson disease. Archives of Neurology 33:139–40. [aMLL]Google Scholar
Henderson, S. E. (1985) Motor skill development. In: Current approaches to Down syndrome, ed. Lane, D. & Stratford, B.. London: Holt. [aMLL]Google Scholar
Henderson, S. E., Morris, J. & Frith, V. (1981) The motor deficit in Down's syndrome children: A problem of timing? Journal of Child Psychology and Psychiatry 22:233–45. [aMLL]Google Scholar
Henneman, E., Somjen, G. & Carpenter, D. O. (1965) Excitability and inhibitibility of motoneurones of different sizes. Journal of Neurophysiology 28:599620. [arMLL]Google Scholar
Herz, E. (1944) Dystonia: 1. Historical review, analysis of dystonic symptoms and physiologic mechanisms involved. Archives of Neurology and Psychiatry (Chicago) 51:305–18. [aMLL]Google Scholar
Hoefer, P. F. A. & Putnam, T. J. (1940) Action potentials of muscles in athetosis and Syndenham chorea. Archives of Neurology and Psychiatry (Chicago) 44:417–31. [aMLL]Google Scholar
Hogan, N., (1984) An organizational principle for a class of voluntary movements. Journal of Neuroscience 4:2745–54. [aMLL]Google Scholar
Holt, K. G. (1993) Toward general principles for research and rehabilitation of disabled populations. Physical Therapy Practice 2(4):118. [KGH]Google Scholar
Holt, K. G., Jeng, S. F., Ratcliffe, R. & Hamill, J. (in press) Energetic cost and stability in preferred human walking. Journal of Motor Behavior. [KGH]Google Scholar
Horak, F. B., Nashner, L. M. & Diener, H. C. (1990) Postural strategies associated with somatosensory and vestibular loss. Experimental Brain Research 82:167–77. [aMLL]Google Scholar
Houk, J. C. (1976) An assessment of stretch reflex function. Progress in Brain Research 44:303–14. [aMLL]Google Scholar
Houk, J. C. (1979) Regulation of stiffness by skeletomotor reflexes. Annual Review of Physiology 41:99114. [aM LL]Google Scholar
Hughes, M. & McLellan, D. L. (1985) Increased co-activation of the upper limb muscles in writer's cramp. Journal of Neurology, Neurosurgery, and Psychiatry 48:782–87. [aMLL]Google Scholar
Hunter, J. P., Ashby, P. & Lang, A. E. (1988) Afferents contributing to the exaggerated long latency reflex response to electrical stimulation in Parkinson's disease. Journal of Neurology, Neurosurgery, and Psychiatry 51:1405–10. [aMLL]Google Scholar
Inzelberg, R., Flash, T. & Korczyn, A. D. (1990) Kinematic properties of upperlimb trajectories in Parkinson's disease and idiopathic torsion dystonia. Advances in Neurology 53:183–89. [aMLL]Google Scholar
Isacov, E., Mizrahi, J., Ring, H., Susak, Z. & Hakim, N. (1992) Standing sway and weight-bearing distribution in people with below-knee amputations. Archives of Physical Medicine and Rehabilitation 73:174–78. [ASA]Google Scholar
Isenberg, C. & Conrad, B. (1994) Kinematic properties of slow arm movements in Parkinson's disease. Journal of Neurology 241:323–30. [aMLL]Google Scholar
Jeka, J. J. & Kelso, J. A. S. (1995) Manipulating symmetry in the coordination dynamics of human movement. Journal of Experimental Psychology: Human Perception and Performance 21:360–74. [PJT]Google Scholar
Jenkins, W. M. & Merzenich, M. M. (1987) Reorganization of neocortical representations after brain injury: A neurophysiological model of the bases of recovery from stroke. In: Progress in brain research, ed. Seil, F. J., Herbert, E. & Carlson, B. M.. Elsevier. [aMLL]Google Scholar
Jenkins, W. M., Merzenich, M. M. & Recanzone, G. (1990) Neocortical representation dynamics in adult primates: Implications for neuropsychology. Neuropsychologia 28:573–84. [aMLL]Google Scholar
Johansson, R. S. & Westling, G. (1984) Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Experimental Brain Research 56:550–64. [RLK]Google Scholar
Johnson, M. T. V., Kipnis, A. N., Lee, M. C., Loewenson, R. B. & Ebner, T. J. (1991) Modulation of the stretch reflex during volitional sinusoidal tracking in Parkinson's disease. Brain 114:443–60. [aMLL]Google Scholar
Joris, H. J. J., Edwards van Muyen, A. J., van Ingen Schenau, G. J. & Kemper, H. C. G. (1985) Force, velocity, and energy flow during the overarm throw in female handball players. Journal of Biomechanics 18:409–14. [aMLL]Google Scholar
Kalaska, J. & Pomeranz, B. (1979) Chronic paw denervation causes an agedependent appearance of novel responses from forearm in “paw cortex” of kittens and adult cats. Journal of Neurophysiology 42:618–33. [aMLL]Google Scholar
Kaminski, T. & Gentile, A. M. (1986) Joint control strategies and hand trajectories in multijoint pointing movements. Journal of Motors Behavior 18:261–78. [aMLL]Google Scholar
Kasai, T. & Komiyama, T. (1988) The timing and the amount of agonist facilitation and antagonist inhibition of varying ankle dorsiflexion force in man. Brain Research 447:389–92. [TK]Google Scholar
Kasai, T. & Komiyama, T. (1991) Antagonist inhibition during rest and precontraction. Electroencephalography and Clinical Neurophysiology 81:427–32. [TK]Google Scholar
Kasai, T. & Taga, T. (1992) Effects of varying load conditions on the organization of postural adjustments during voluntary arm flexion. Journal of Motor Belwvior 24:359–65. [TK]Google Scholar
Kelso, J. A. S. (1984) Phase transitions and critical behavior in human bimanual coordination. American Journal of Physiology 246:R1000R1004. [rMLL]Google Scholar
Kelso, J. A. S. (1989) Phase transitions: Foundations of behavior. In: Synergetics of cognition, ed. Haken, H.. [JPS]Google Scholar
Kelso, J. A. S. (1994) The informational character of self-organized coordination dynamics. Human Movement Science 13:393413. [PJT]Google Scholar
Kelso, J. A. S. (1995) Dynamic patterns: The self-organization of brain and behavior. MIT Press. [PJT]Google Scholar
Kelso, J. A. S., Buchanan, J. J., DeGuzman, G. C. & Ding, M. (1993) Spontaneous recruitment and annihilation of degrees of freedom in biological coordination. Physics letters A179:364–71. [PJT]Google Scholar
Kelso, J. A. S., DelColle, J. D. & Schöner, G. (1990) Action-perception as a pattern formation process. In: Attention and performance 13, ed. Jeannerod, M.. Erlbaum. [PJT]Google Scholar
Kelso, J. A. S., Ding, M. & Schoner, G. (1993) Dynamic pattern formation: A primer. In: A dynamic systems approach to development, ed. Smith, L. B. & Thelen, E.. MIT Press. [KMN]Google Scholar
Kelso, J. A. S. & Joka, J. J. (1992) Symmetry braking dynamics of human inultilimb coordination. Journal of Experimental Psychology: Human Perception and Performance 18:645668. [SPS]Google Scholar
Kelso, J. A. S., Scholz, J. P. & Schöner, G. (1988) Dynamics governs switching among patterns of coordination in biological movement. Physics Letters A134:812. [PJT]Google Scholar
Kelso, J. A. S. & Schöner, G. (1988) Self-organization of coordinative movement patterns. Human Movement Science 7:2746. [rMLL]Google Scholar
Kerr, G., Miall, R. & Stein, J. (1992) Visuo-motor adaptation during inactivation of the cerebellar nuclei: A preliminary report. Human Movement Science 12:7183. [CJW]Google Scholar
Kerr, R. & Blais, C. (1985) Motor skill acquisition by individuals with Down syndrome. American Journal of Mental Deficiency 90:313–18. [aMLL]Google Scholar
Keshner, E. A. (1994) Vertebral orientation and muscle activation patterns during controlled head movements in cats. Experimental Brain Research 98:546–50. [aMLL]Google Scholar
Kew, J. J. M., Ridding, M. C., Rothwell, J. C., Passingham, R. E., Leigh, P. N., Sooriakumaran, S., Frackowiak, R. S. J. & Brook, D. J. (1994) Reorganization of cortical blood flow and transcranial magnetic stimulation maps in human subjects after upper limb amputation. Journal of Neuroiphysiology 72:2517–24. [aMLL]Google Scholar
Klatzky, R. L. & Lederman, S. J. (1993) Toward a computational model of constraint-driven exploration and haptic object identification. Perception 22:597621. [RLK]Google Scholar
Knott M. & Voss, D. E. (1956) Proprioccptive neuromuscularfacilitation. Harper & Row. [MFL]Google Scholar
Knutsson, E. & Mrtensson, A. (1986) Posture and gait in parkinsonian patients. In: Disorders of posture and gait, ed. Bles, I. W. & Brandt, T.. Elsevier. [JK]Google Scholar
Kugler, P. N., Kelso, J. A. S. & Turvey, M. T. (1980) On the concept of coordinative structures as dissipative structures: 1. Theoretical lines of convergence. In: Tutorials in motor behavior, ed. Stehnach, G. E. & Requin, J.. North-Holland. [KMN]Google Scholar
Kugler, P. N. & Turvey, M. T. (1987) Information, natural law, and the selfasscmlily of rhythmic movement. Erlbaum. [REAVE]Google Scholar
Larkin, D. & Hoare, D. (1992) The movement approach: A window to understanding the clumsy child. In: Approaches to the Study of Motor Control and Learning, ed. Summers, J. J.. Amsterdam: North-Holland. [aMLL]Google Scholar
Lashley, K. S. (1933) Integrative functions of the cerebral cortex. Physiological Reviews, 13:142. [aMLL]Google Scholar
Latash, M. L. (1992) Motor control in Down syndrome: The role of adaptation and practice. Journal of Developmental and Physical Disability 4:227–61. [aMLL]Google Scholar
Latash, M. L. (1993) Control of human movement. Urbana, IL: Human Kinetics. [arMLL]Google Scholar
Latash, M. L. (1996) How does our brain make its choices? In: Dexterity and its development, ed. Latash, M. L. & Turvey, M.. Erlbaum. [rMLL]Google Scholar
Latash, M. L., Almeida, G. L. & Corcos, D. M. (1993) Pre-programmed reactions in individuals with Down syndrome: The effects of instruction and predictability of the perturbation. Archives of Physical Medicine and Rehabilitation 73:391–99. [arMLL]Google Scholar
Latash, M. L., Aruin, A. S., Neyman, I. & Nicholas, J. J. (1995) Anticipatory postural adjustments during self-inflicted and predictable perturbations in Parkinson's Disease. Journal of Neurology, Neurosurgery, and Psychiatry. 58:326–34. [ASA, DMC, aMLL]Google Scholar
Latash, M. L., Aruin, A. S., Neyman, I., Nicholas, J. J. & Shapiro, M. B. (1995) Feedforward postural adjustments in a simple two-joint synergy in patients with Parkinsons disease. Electroencephalography and Clinical Neurophysiology 97:7789. [DMC]Google Scholar
Latash, M. L. & Corcos, D. M. (1991) Kinematic and electromyographic characteristics of single-joint movements of individuals with Down syndrome. American Journal of Mental Retardation 96:189201. [arMLL]Google Scholar
Latash, M. L. & Gutman, S. R. (1994) Abnormal motor patterns in the framework of the equilibrium-point hypothesis: A cause for dystonic movements? Biological Cybernetics 71:8794. [arMLL, EVB]Google Scholar
Latash, M. L. & Turvey, M., Eds. (1996) Dexterity and its development. Erlbaum. [rMLL]Google Scholar
Lederman, S. J. & Klatzky, R. L. (1987) Hand movements: A window into haptic object recognition. Cognitive Psychology 19:342–68. [RLK]Google Scholar
Lee, R. G., Murphy, J. T. & Tatton, W. G. (1983) Long-latency myotatic reflexes in man: Mechanisms, functional significance, and changes in patients with Parkinson's disease or hemiplegia. Advances in Neurology 39:489508. [aMLL]Google Scholar
Lee, R. G. & Stein, R. B. (1981) Resetting of tremor by mechanical perturbations: A comparison of essential tremor and Parkinsonian tremor. Annals of Neurology 10:523–31. [aMLL]Google Scholar
Lee, R. G. & Tatton, W. G. (1975) Motor responses to sudden limb displacements in primates with specific CNS lesions and in human patients with motor system disorders. Canadian Journal of Neurological Science 2:285–93. [aMLL]Google Scholar
Lee, W. A. (1980) Anticipatory control of posture and task muscles during rapid arm flexion. Journal of Motor Behavior 12:185–96. [aMLL]Google Scholar
Leonard, C. T., Hischfeld, H. & Forssberg, H. (1991) The development of independent walking in children widi cerebral palsy. Developmental Medicine and Child Neurology 33:567–77. [ET]Google Scholar
Levin, M. F. & Feldman, A. G. (1994) The role of stretch reflex threshold regulation in normal and impaired motor control. Brain Research 657:2330. [MFL]Google Scholar
Levin, M. F., Horowitz, M. R., Jurrius, J., Lamoth, C., Meijer, O. & Feldman, A. G. (1994) Interjoint coordination of reaching movements in spastic hemiparetic subjects. Physical Therapy 74(SuppI.5):S110. [MFL]Google Scholar
Lieber, R. L. & Bodine-Fowler, S. C. (1993). Skeletal muscle mechanics: Implications for rehabilitation. Physical Therapy 73:844–56. [aMLL]Google Scholar
Lincoln, A. J., Courchesne, E., Kilman, B. A. & Galambos, R. (1985) Neuropsychological correlates of information-processing by children with Down syndrome. American Journal of Mental Deficiency 89:403–14. [aMLL]Google Scholar
Lockman, J. J. & Thelen, E. (1993) Developmental biodynamics: Brain, body, behavior connections. Child Development 64:953–59. [aMLL]Google Scholar
Lockwood, R. (1987). Rehabilitation. In: Physical education and disability, ed. Lockwood, R.. The Australian Council for Health, Physical Education and Recreation. [aMLL]Google Scholar
Luria, A. R. (1963) Restoration of function after brain injury. Oxford University Press. [AMW]Google Scholar
Luria, A. R. (1973) The working brain: An introduction to neuropsychology. Basic Books. [aMLL]Google Scholar
Marsden, C. D. (1988) Investigation of dystonia. In: Dystonia 2: Advances in neurology, vol. 50, ed. Fahn, S., Marsden, C. D. & Calne, D. B.. Raven. [aMLL]Google Scholar
Marsden, C. D., Merton, R. A. & Morton, H. B. (1972) Servo action in human voluntary movement. Nature 238:140–43. [aMLL]Google Scholar
Marsden, C. D., Merton, R. A., Morton, H. B., Adam, J. E. R. & Hallett, M. (1978) Automatic and voluntary responses to muscle stretch in man. Progress in Clinical Neurophysiology 4:167–77. [aMLL]Google Scholar
Marsden, C. D., Merton, R. A., Morton, H. B., Rothwell, J. C. & Traub, M. M. (1981) Reliability and efficacy of the long-latency stretch reflex in the human thumb. Journal of Physiology 316:4760. [aMLL]Google Scholar
Marsden, C. D., Rothwell, J. C. & Traub, M. (1979) Long latency stretch reflex of the human thumb can be reversed if the task is changed. Journal of Physiology 293:41P42P. [aMLL]Google Scholar
Massion, J. (1992) Movement, posture and equilibrium: Interaction and coordination. Progress in Neurobiology 38:3556. [aMLL]Google Scholar
Masters, R. W. W. (1992) Knowledge, nerves and know-how: The role of explicit versus implicit knowledge in the breakdown of a complex motor skill under pressure. British Journal of Psychology 83:343–58. [RSWM]Google Scholar
Matthews, P. B. C., Cody, F. W. J., Richardson, H. C. & MacDermott, N. (1990) Observations on the reflex effects seen in Parkinson's disease on terminating a period of tendon vibration. Journal of Neurology, Neurosurgery, and Psychiatry 53:215–19. [aMLL]Google Scholar
Mauerberg, E., Schuller, J. & Fantucci, I. (1994) Phase portrait description of walking pattern of severely mentally retarded subjects. Brazilian International Journal of Adapted Physical Education Research 1:1950. [aMLL]Google Scholar
Mawston, G. A. & Anson, J. G. (1994). Down syndrome: Attention and neuromotor reaction time [abstracts of the 11th Annual Australasian Winter Conference on Brain Research]. International Journal of Neuroscience. 74:158 [aMLL]Google Scholar
McMahon, T. A. & Bonner, J. T. (1983) On size and life. Scientific American Books. [AWB]Google Scholar
Merzenich, M. M., Nelson, R. J., Stryker, M. S., Cynader, M. S., Schoppman, A. & Zook, J. M. (1984) Somatosensory cortical map changes following digit amputation in adult monkeys. Journal of comparative Neurology 224:591605. [aMLL]Google Scholar
Metzler, J. & Marks, P. S. (1979) Functional changes in eat somatic sensorymotor cortex during short-term reversible epidural blocks. Brain Research 177:379–83. [aMLL]Google Scholar
Morgan, M., Phillips, J. G., Bradshaw, J. L., Mattingley, J. B., Iansek, R. & Bradshaw, J. A. (1994) Age-related motor slowness: Simply strategic? Journal of Gerontology: Medical Sciences 49:M133M139. [JEP]Google Scholar
Morris, A. F., Vaughan, S. E. & Vaccaro, P. (1982) Measurements of neuromuscular tone and strength in Down's syndrome children. Journal of Mental Deficiency Research 26:4146. [aMLL]Google Scholar
Morris, M. E., Iansek, R., Matyas, T. A. & Summers, J. J. (1994) The pathogenesis of gait hypokinesia in Parkinson's disease. Brain 117:1169–81. [aMML, JJS]Google Scholar
Morris, M. E., Iansek, R., Matyas, T. A. & Summers, J. J. (1995) Motor considerations for the rehabilitation of gait in Parkinsons disease. In: Motor control and sensory motor integration, ed. Glencross, D. & Piek, J.. North Holland. [JJS]Google Scholar
Morris, M. E., Iansek, R., Matyas, T. A. & Summers, J. J. (in press) Motor control of gait in Parkinson's disease [abstracts of the 12th International Australasian Winter Conference on Brain Research]. International Journal of Neuroscience. [aMLL]Google Scholar
Morris, M. E., Matyas, T. A., Bach, T. G. & Goldie, P. A. (1992) Electrogoniometric feedback: Its effect on genu recurvatum in stroke. Archives of Physical Medicine and Rehabilitation 73:1147–58. [MM]Google Scholar
Mortimer, J. A. & Webster, D. D. (1979) Evidence for a quantitative association between EMG stretch responses and Parkinsonian rigidity. Brain Research 162:169–73. [aMLL]Google Scholar
Mulder, T. & Guerts, S. (1991) The assessment of motor dysfunctions: Preliminaries to a disability-oriented approach. Human Movement Science 10:565–74. [JJS]Google Scholar
Muller, F. & Abbs, J. H. (1990) Precision grip in Parkinsonian patients. Advances in Neurology 53:191–95. [aMLL]Google Scholar
Nakashima, K., Rothwell, J. C., Day, B. L., Thompson, P. D., Shannon, K. & Marsden, C. D. (1989) Reciprocal inhibition between forearm muscles in patients with writer's cramp and other occupational cramps, symptomatic hemidystonia and hemiparesis due to stroke. Brain 112:681–97. [aMLL]Google Scholar
Nashner, L. M., Shumway-Cook, A. & Marin, O. (1983). Stance posture control in select groups of children with cerebral palsy: Deficits in sensory organization and muscular control. Experimental Brain Research 49:393409. [JPS]Google Scholar
Nativ, J. & Abbs, J. H. (1989) Goal-directed arm movements in Down syndrome. In: Motor control in Down syndrome, ed. Latash, M. L.. Chicago: Rush Medical Center. [aMLL]Google Scholar
Nelson, W. (1983) Physical principles for economies of skilled movements. Biological Cybernetics 46:135–47. [arMLL]Google Scholar
Newell, K. M. & Corcos, D. M., Eds. (1993) Variability in motor control. Human Kinetics. [arMLL]Google Scholar
Newell, K. M., Van Emmerik, R. E. A. & McDonald, P. V. (1989) Biomechanical constraints and action theory. Human Movement Science 8:403409. [aMLL]Google Scholar
Nichols, T. R. (1989) The organization of heterogenic reflexes among muscles crossing the ankle joint in the decerebrate cat. Journal of Physiology 410:463–77. [aMLL, CCAMG]Google Scholar
O'Brien, C. & Hayes, A. (1995) Normal and impaired motor development: Theory into practice. Chapman and Hall. [CJW]Google Scholar
Oliveira, R. M. (1994) The amplitude of movements in patients with Parkinson's disease. Unpublished thesis. University of Oxford. [JMG]Google Scholar
Oppenheim, R. W. (1981) Ontogenetic adaptations and retrogressive processes in the development of the nervous system and behavior. In: Maturation and behavior development, ed. Connolly, K. & Prechtl, H.. Spastics Society Publications.Google Scholar
Pascual-Leone, A., Grafman, J. & Hallett, M. (1994) Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science 263:1287–89. [aMLL]Google Scholar
Penn, R. D. & Kroin, J. S. (1987) Long-term intrathecal baclofen infusion for treatment of spasticity. Journal of Neurosurgery 66:181–85. [rMLL]Google Scholar
Penn, R. D., Savoy, S. M., Corcos, D., Latash, M., Gottlieb, G., Parke, B. & Kroin, J. (1989) Intrathecal baclofen for severe spinal spasticity. New England Journal of Medicine 320:1517–21. [rMLL]Google Scholar
Peters, M. (1994) Does handedness play a role in the coordination of bimanual movement? In: Interlimb coordination: Neural, dynamical, and cognitive constraints, ed. Swinnen, S., Heuer, H., Massion, J. & Casaer, P.. Academic Press. [PJT]Google Scholar
Phillips, J. G., Martin, K. E., Bradshaw, J. L. & Iansek, R. (1994) Could bradykinesia in Parkinson's disease simply be compensation? Journal of Neurology 241:439–47. [AB, JEP]Google Scholar
Popper, K. R. & Eccles, J. C. (1983) The self and its brain. Routledge & Kegan Paul. [rMLL]Google Scholar
Pozzo, T., Berthoz, A. & Lefort, L. (1990) Head stabilization during various locomotor tasks in humans: 1. Normal subjects. Experimental Brain Research 82:97106. [aMLL]Google Scholar
Rarick, G. L., Dobbins, D. A. & Broadhead, G. G. (1976) The motor domain and its correlates in educated handicapped children. Prentice Hall. [aMLL]Google Scholar
Recanzone, G. H., Allard, T. T., Jenkins, W. M. & Merzenich, M. M. (1990) Receptive-field changes induced by peripheral nerve stimulation in SI of adult cats. Journal of Neurophysiology 63:1213–25. [aMLL]Google Scholar
Recanzone, G. H., Merzenich, M. M., Jenkins, W. M., Grajski, K. A. & Dinse, H. R. (1992) Topographic reorganization of the hand representation in cortical area 3b of owl monkeys trained in a frequency-discrimination task. journal of Neurophysiology 67:1031–56. [aMLL]Google Scholar
Riddoch, G. (1935) Visual disorientation in homonymous half-fields. Brain 58:376–82. [MFL]Google Scholar
Robbins, T. (1991) Cognitive deficits in schizophrenia and Parkinson's disease: Neural basis and the role of dopamine. In: The mesolimbic dopamine system: From motivation to action, ed. Willner, P. & Scheel-Kruger, J.. Wiley. [JMG]Google Scholar
Rodosky, M. W., Andriacchi, T. P. & Andersson, G. B. J. (1989) The influence of chair height on lower limb mechanics during rising. Journal of Orthopaedic Research 7:266–71. [JHC]Google Scholar
Rood, M. (1962) The use of sensory receptors to activate, facilitate and inhibit motor response, automatic and somatic in developmental sequence. In: Approaches to the treatment of patients with neuromuscular dysfunction, ed. Sattely, C.. Brown, William C.. [MFL]Google Scholar
Rosen, A. J., Lockhart, J. J., Gants, E. S. & Westergaard, C. K. (1993). Maintenance of grip-induced muscle tension: A behavioral marker of schizophrenia. Journal of Abnormal Psychology 100:583–93. [aMLL]Google Scholar
Rosenbaum, D. A. (1991) Human motor control. Academic Press. [aMLL]Google Scholar
Rothwell, J. C., Day, B. L., Berardelli, A. & Marsden, C. D. (1986) Habitation and conditioning of the human long latency stretch reflex. Experimental Brain Research 63:197204. [aMLL]Google Scholar
Rothwell, J. C., Obeso, J. A., Traub, M. M. & Marsden, C. D. (1983) The behavior of the long-latency stretch reflex in patients with Parkinson's disease. Journal of Neurology Neurosurgery and Psychiatry 46:3544. [aMLL]Google Scholar
Sanes, J. N. (1985) Information processing deficits in Parkinson's disease during movement. Neuropsychology 23:381–92. [aMLL]Google Scholar
Satinoff, E., Kent, S. & Hurd, M. (1991) Phenotolamine and thermoregulation in rats. Pharmacology, Biochemistry, and Behavior 40(4):709–16. [MGW]Google Scholar
Schieppati, M. & Nardone, A. (1991) Free and supported stance in Parkinson's disease: The effect of posture and “postural set” on leg muscle responses to perturbation, and its relation to the severity of the disease. Brain 114:1227–44. [aMLL]Google Scholar
Schmidt, R. A. (1988) Motor control and teaming: A behavioral analysis. Human Kinetics. [JPS]Google Scholar
Scholz, J. P. (1991) Dynamic pattern theory: Some implications for therapeutics. Physical Therapy 70:827–43. [KMN, JPS]Google Scholar
Schöner, G. (1990) A dynamic theory of coordination of discrete movement. Biological Cybernetics 63:257–70. [rMLL]Google Scholar
Schöner, G., Jiang, W. Y. & Kelso, J. A. S. (1990) A synergetic theory of quadrupedal gaits and gait transitions. Journal of Theoretical Biology 142:359–93. [PJT]Google Scholar
Schöner, G. & Kelso, J. A. S. (1988a) A synergetic theory of environmentallyspecified and learned patterns of movement coordination: 1. Relative phase dynamics. Biological Cybernetics 58:7180. [PJT]Google Scholar
Schöner, G. & Kelso, J. A. S. (1988b) Dynamic pattern generation in behavioral and neural systems. Science 239:1513–20. [REAVE, rMLL]Google Scholar
Schöner, C., Zanone, P. C. & Kelso, J. A. S. (1992) Learning as a change of coordination dynamics: Theory and experiment. Journal of Motor Behavior 24:2948. [JPS, PJT]Google Scholar
Seif-Naraghi, A. H. & Winters, J. M. (1990) Optimized strategies for scaling goal-directed dynamic limb movements. In: Multiple muscle systems. Biomechanics and movement organization, ed. Winters, J. M. & Woo, S. L.-Y.. Springer-Verlag. [aMLL]Google Scholar
Shadmehr, R., Mussa-Ivaldi, F. A. & Bizzi, E. (1993) Postural force fields and their role in generation of multi-joint movements. Journal of Neuroscience 13:4562. [rMLL]Google Scholar
Shapiro, B. L. (1983) Downs syndrome: A disruption of homestasis. American Journal of Medical Genetics 14:241–69. [MCW]Google Scholar
Shepherd, R. (1984) Physiotherapy in paediatrics, 2d ed.Heinemann. [aMLL]Google Scholar
Shepherd, R. (1995) Physiotherapy in paediatrics, 2d ed.Butterworth-Heinemann. [JHC]Google Scholar
Shepherd, R. B. & Carr, J. H. (1991) An emergent or dynamical systems view of movement dysfunction. Australian Journal of Physiotherapy 37(4):517. [JHC]Google Scholar
Sheridan, M. R. (1985). Individual differences in voluntary movement. In: Individual differences in movement, ed. Kirklady, B. D.. MTP Press. [aMLL]Google Scholar
Sheridan, M. R. & Flowers, K. A. (1990) Movement variability and bradykinesia in Parkinson's disease. Brain 113:1149–61. [aMLL]Google Scholar
Sheridan, M. R., Flowers, K. A. & Hurrell, J. (1987) Programming and execution of movement in Parkinson's disease. Brain 110:1247–71. [AB, aMLL]Google Scholar
Shumway-Cook, A. & Horak, F. B. (1989) Vestibular rehabilitation: An exercise approach to managing symptoms of vestibular dysfunction. Seminars in Hearing 10:196208. [aMLL]Google Scholar
Shumway-Cook, A. & Woollacott, M. H. (1985) Dynamics of postural control in the child with Down Syndrome. Physical Therapy 65:1315–22. [aMLL]Google Scholar
Sparrow, W. A. & Irizarry-Lopez, (1987) Mechanical efficiency and metabolic cost as measure of learning a novel gross motor task. Journal of Motor Behavior 19(2):240–64. [MGW]Google Scholar
Statham, L. & Murray, M. P. (1971) Early walking patterns of normal children. Clinical Orthopaedics 79:824. [ET]Google Scholar
Stein, J. & Clickstein, M. (1992) Role of the cerebellum in visual guidance of movement. Physiological Reviews 72(4):9671017. [CJW]Google Scholar
Stein, P. S. G. (1978) Motor systems, with specific reference to the control of locomotion. Annual Review of Neurosdence 1:6181. [TK]Google Scholar
Stein, R. B., Yang, J. F., Belanger, M. & Pearson, K. G. (1993). Modification of reflexes in normal and abnormal movements. Progress in Brain Research 97:189–96. [aMLL]Google Scholar
Stelmach, G. E. & Worringham, C. J. (1988) The preparation and production of isometric force in Parkinson's disease. Neuropsychology 26:93103. [aMLL]Google Scholar
Stelmach, G. E., Worringham, C. J. & Strand, E. A. (1986) Movement preparation in Parkinson s disease: The use of advance information. Brain 109:1179–94. [aMLL]Google Scholar
Sugden, D. A. & Keogh, J. F. (1990) Problems in movement skill development. University of South Carolina Press. [aMLL]Google Scholar
Swinnen, S. P., Dounskaia, N., Verschueren, S., Semen, D. J. & Daelman, A. (1995) Relative phase destabilization during interlimb coordination: The disruptive role of kinesthetic afferences induced by passive movement. Experimental Brain Research. 105:439–54. [SPS]Google Scholar
Swinnen, S. P., Massion, J., Heuer, H. & Casaer, P. (Eds.) (1994). Interlimb coonlination: Neural, dynamical, and cognitive constraints. Academic Press. [aMLL]Google Scholar
Swinnen, S. P., Verschueren, S. M. P. & Dom, R. (1995). Bimanual coordination in parkinsonian patients during the production of drawing movement. Paper presented at the Fifth Neural Control of Movement Meeting, Key West, Florida. [SPS]Google Scholar
Swinnen, S. P., Walter, C. B., Lee, T. D. & Serrin, D. J. (1993). Acquiring bimanual skills: Contrasting forms of information feedback for interlimb decoupling. Journal of Experimental Psychology: Learning, Memory, & Cognition 19:1328–44. [SPS]Google Scholar
Tanaka, R. (1974) Reciprocal la inhibition during voluntary movements in man. Experimental Brain Research 21:529–40. [TK]Google Scholar
Tatton, W. G. & Lee, R. G. (1975) Evidence for abnormal long-loop reflexes in rigid Parkinsonian patients. Brain Research 100:671–76. [aMLL]Google Scholar
Taub, E. (1980) Somatosensory deafferentation research with monkeys: Implications for rehabilitation medicine. In: Behavioral psychology in rehabilitation medicine, ed. Ince, L. P.. Williams and Wilkins. [JHC]Google Scholar
Taub, E., Miller, N. E., Novack, T. A., Cook, E. W., Fleming, W. C., Nepomuceno, C. S., Connell, J. S. & Crago, J. E. (1993) Technique to improve chronic motor deficit after stroke. Archives of Physical Medicine Rchaliilittition 74:347–54. [EVB]Google Scholar
Tax, A. A. M., Denier van der Con, J. J. & Erkelens, C. J. (1990) Differences in coordination of elbow flexor muscles in force tasks and in movement tasks. Experimental Brain Research 81:567–72. [aMLL, CCAMG]Google Scholar
Theeuwen, M., Gielen, C. C. A. M. & Miller, L. E. (1994) The relative activation of muscles during isometric contractions and low-velocity movements against a load. Experimental Brain Research 101:493505. [CCAMG]Google Scholar
Thelen, E. (1989) Evolving and dissolving synergies in the development of leg coordination. In: Perspectives on the coordination of movement, ed. Wallace, S.. North-Holland. [CBW]Google Scholar
Thelen, E., Bril, G. & Breniere, Y. (1992). The emergence of heel strike in newly walking infants: A dynamic interpretation. In: Posture and gait control mechanisms, ed. Woollacott, M. & Horak, F.. University of Oregon Books. [ET]Google Scholar
Thelen, E. & Fogel, A. (1989) Toward an action-based theory of infant development. In: Action in social context: Perspectives on early development, ed. Lockman, J. J. & Hazen, N. L.. Plenum. [aMLL]Google Scholar
Thelen, E., Zemicke, R., Schneider, K., Jensen, J., Kamm, K. & Corbetta, D. (1992) The role of intersegmental dynamics in infant neuromotor development. In: Tutorials in motor behavior II, ed. Stelmach, G. E. & Requin, J.. Elsevier. [aMLL]Google Scholar
Traub, M. M., Rothwell, J. C. & Marsden, C. D. (1980) Anticipatory postural reflexes in Parkinson's disease and other akinetic-rigid syndromes and in cerebellar ataxia. Brain 103:393412. [aMLL]Google Scholar
Treffner, P. J. & Turvey, M. T. (1993) Resonance constraints on rhythmic movement. Journal of Experimental Psychology: Human Perception and Performance 19:1221–37. [PJT]Google Scholar
Treffner, P. J. & Turvey, M. T. (1995) Handedness and the asymmetric dynamics of bimanual rhythmic coordination. Journal of Experimental Psychology 21:318–33. [PJT]Google Scholar
Treffner, P. J. & Turvey, M. T. (in press) Symmetry, broken symmetry, and handedness in bimanual coordination dynamics. Experimental Brain Research. [PJT]Google Scholar
Turvey, M. T. (1990) Coordination. American Psychologist 45:3853. [arMLL, KMN]Google Scholar
Van Emmerik, R. E. A. & Wagenaar, R. C. (in press) Effects of walking velocity on relative phase dynamics in the trunk in human walking. Journal of Biomechanics. [REAVE]Google Scholar
van Ingen Schenau, G. J. (1989) From rotation to translation: Constraints on multi-joint movements and the unique action of bi-articular muscles. Human Movement Science 8:301–37. [aMLL]Google Scholar
van Zuylen, E. J., Gielen, C. C. A. M. & Denier van der Con, J. J. (1988) Coordination and inhomogenous activation of human arm muscles during isometric torques. Journal of Neurophysiology 60:1523–148. [aMLL]Google Scholar
Verschueren, S. M. P., Swinnen, S. P. & Dom, R. (in press) Interlimb coordination in patients with Parkinson's disease: Learning capabilities and the importance of augmented visual information. In: Studies in perception and action 3 posters presented at the Eighth International Conference on Event Perception and Action, ed. Bardy, B. G., Bootsma, R. J. & Guiard, Y.. Erlbaum. [SPS]Google Scholar
Viallet, F., Massion, J., Massarino, R. & Khalil, R. (1987) Performance of a bimanual load-lifting task by Parkinsonian patients. Journal of Neurology, Neurosurgery, and Psychiatry 50:1274–83. [aMLL]Google Scholar
Wade, M. G. (1973) Biorhythms and activity level of institutionalized mentally retarded persons diagnosed hyperactive. American Journal of Mental Deficiency 78:262–67. [MGW]Google Scholar
Wade, M. G. (1990) Impact of optical flow on postural control in normal and mentally handicapped persons. In: Medicine and sports science: Motor development adapted physical activity and mental retardation, ed. Vermeer, A.. Karger. [MGW]Google Scholar
Wagenaar, R. C. & Beek, W. J. (1992) Hemiplegic gait: A kinematic analysis using walking speed as a basis. Journal of Biomechanics 25:1007–15. [REAVE]Google Scholar
Wagenaar, R. C. & van Emmerik, R. E. A. (1994) Dynamics of pathological gait. Human Movement Science 13:441–72. [KMN]Google Scholar
Wagenaar, R. C. & van Emmerik, R. E. A. (1995) Releaming dynamics after stroke. In: Movement disorders, ed. van der Kamp, J., van Zandwijk, J. P., Dallmeijer, A. J., Vaal, J. & Enschede, C. Leemrijse., Netherlands: Copy 2000. [RSWM]Google Scholar
Walter, C. B. & Swinnen, S. P. (1992) Adaptive tuning of interlimb attraction to facilitate bimanual decoupling. Journal of Motor Behavior 24:95104. [CBW]Google Scholar
Walter, C. B. & Swinnen, S. P. (1994) The formation and dissolution of “bad habits” during the acquisition of coordination skills. In: Interlimb coordination. Neural, dynamical, and cognitive constraints, ed. Swinnen, S., Heuer, H., Massion, J. & Casaer, P.. Academic Press. [SPS, CBW]Google Scholar
Wann, J. P. & Tumbull, J. D. (1993) Motor skill learning in cerebral palsy: Movement, action and computer-enhanced therapy. In: Baillierc's clinical neurology: vol 2. Rehabilitation of motor disorders, ed. Ward, C. E.. [EVB]Google Scholar
Ward, C. D. & Gibb, W. R. (1990) Research diagnostic criteria for Parkinson's disease. In: Advances in neurology: Parkinson's disease: Anatomy, pathology and therapy, ed. Streifier, M. B., Korczyn, A. D., Melamed, E. & Youdim, M. B.. Raven. [JMG]Google Scholar
Webster, D. D. (1968) Critical analysis of the disability in Parkinson's disease. Modem Treatment 5:257–82. [JMG]Google Scholar
Weiller, C., Ramsay, S. C., Wise, R. J. S., Friston, K. J. & Frackowiak, R. S. J. (1993) Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Annals of Neurology 33:181–89. [MFL]Google Scholar
Whiting, H. T. A. (1984) Human motor actions: Bernstein reassessed. Elsevier. [aMLL]Google Scholar
Wierzbicka, M., Wiegner, A. W., Logigian, E. L. & Young, R. R. (1991) Abnormal most-rapid isometric contractions in patients with Parkinson's disease. Journal of Neurology, Neurosurgery, and Psychiatry 54:210–16. [aMLL]Google Scholar
Wing, A. M. (1988) A comparison of the rate of pinch grip force increases and decreases in Parkinsonian bradykinesia. Neuropsychology 26:479–82. [aMLL]Google Scholar
Wing, A. M., Allison, S. & Jenner, J. R. (1994) Retaining and retraining balance after stroke. In: Rehabilitation of motor disorder, ed. Ward, C., Bailliere-Tindall, C..Google Scholar
Winter, D., Ruder, C. K. & MacKinnon, C. D. (1990) Control of balance of upper body during gait. In: In: Multiple muscle systems. Biomechanics and movement organization, ed. Winters, J. M. & Woo, S. L.-Y.. Springer-Verlag. [aMLL]Google Scholar
Winters, J. M. & Woo, S. L.-Y. (Eds.) (1990) Multiple muscle systems. Biomechanics and movement organization. Springer-Verlag. [aMLL]Google Scholar
Wolf, S., LeCraw, D., Barton, L. & Jann, B. (1989) Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Experimental Neurology 104:125–32. [CJW]Google Scholar
Wolpaw, J. R. (1983) Adaptive plasticity in the primate spinal stretch reflex: Reversal and redevelopment. Brain Research 278:299304. [aMLL]Google Scholar
Wolpaw, J. R., Braitman, D. J. & Seegal, R. F. (1983) Adaptive plasticity in primate spinal stretch reflex: Initial development. Journal of Neurophysiology 50:12961311. [aMLL]Google Scholar
Worringham, C., Cross, C. & Smiley-Oyen, A. (1990) Motor learning in Parkinson's disease: Schema formation, adaptation to altered gain and limb kinematics. Society for Neuroscience Abstracts 16:1315. [CJW]Google Scholar
Worringham, C. & Stelmach, G. (1990) Practice effects on the preprogramming of discrete movements in Parkinson's disease. Journal of Neurology, Neumsurgery and Psychiatry 53:702–4. [CJW]Google Scholar
Zajac, F. E. & Gordon, M. E. (1989) Determining muscles force and action in multi-articular movements. Exercise and Sport Science Reviews 17:187230. [aMLL, CCAMG]Google Scholar
Zanone, P. G. & Kelso, J. A. S. (1992) Evolution of behavioral attractors with learning: nonequilibrium phase transitions. Journal of Experimental Psychology: Human Perception and Performance 18:403–21. [SPS]Google Scholar
198
Cited by