Skip to main content Accessibility help
×
Home

Bayesian computation and mechanism: Theoretical pluralism drives scientific emergence

  • David K. Sewell (a1), Daniel R. Little (a1) and Stephan Lewandowsky (a2)

Abstract

The breadth-first search adopted by Bayesian researchers to map out the conceptual space and identify what the framework can do is beneficial for science and reflective of its collaborative and incremental nature. Theoretical pluralism among researchers facilitates refinement of models within various levels of analysis, which ultimately enables effective cross-talk between different levels of analysis.

Copyright

References

Hide All
Anderson, J. R. (1991b) The adaptive nature of human categorization. Psychological Review 98:409–29.
Barrett, H. C. & Kurzban, R. (2006) Modularity in cognition: Framing the debate. Psychological Review 113:628–47.
Dennett, D. C. (1987) The intentional stance. MIT Press.
Feldman, J. A. (2010) Cognitive science should be unified: Comment on Griffiths et al. and McClelland et al. Trends in Cognitive Sciences 14:341.
Fodor, J. A. (1983) The modularity of mind. MIT Press.
Griffiths, T. L. & Kalish, M. L. (2007) Language evolution by iterated learning with Bayesian agents. Cognitive Science 31:441–80.
Griffiths, T. L., Chater, N., Kemp, C., Perfors, A. & Tenenbaum, J. (2010) Probabilistic models of cognition: Exploring representations and inductive biases. Trends in Cognitive Sciences 14(8):357–64.
Kalish, M. L., Griffiths, T. L. & Lewandowsky, S. (2007) Iterated learning: Intergenerational knowledge transmission reveals inductive biases. Psychonomic Bulletin and Review 14:288–94.
Kalish, M. L., Lewandowsky, S. & Kruschke, J. K. (2004) Population of linear experts: Knowledge partitioning and function learning. Psychological Review 111:1072–99.
Kruschke, J. K. (2006) Locally Bayesian learning with applications to retrospective revaluation and highlighting. Psychological Review 113:677–99.
Kruschke, J. K. (2008) Bayesian approaches to associative learning: From passive to active learning. Learning and Behavior 36:210–26.
Kruschke, J. K. (2010) Bridging levels of analysis: Comment on McClelland et al. and Griffiths et al. Trends in Cognitive Sciences 14:344–45.
Kuhn, T. S. (1970) The structure of scientific revolutions, 2nd edition. University of Chicago Press.
Lewandowsky, S., Griffiths, T. L. & Kalish, M. L. (2009) The wisdom of individuals: Exploring people's knowledge about everyday events using iterated learning. Cognitive Science 33:969–98.
Lewandowsky, S., Kalish, M. & Ngang, S. K. (2002) Simplified learning in complex situations: Knowledge partitioning in function learning. Journal of Experimental Psychology: General 131:163–93.
Lewandowsky, S., Roberts, L. & Yang, L.-X. (2006) Knowledge partitioning in categorization: Boundary conditions. Memory and Cognition 34:1676–88.
Little, D. R. & Lewandowsky, S. (2009) Beyond nonutilization: Irrelevant cues can gate learning in probabilistic categorization. Journal of Experimental Psychology: Human Perception and Performance 35:530–50.
Marr, D. (1982/2010) Vision: A computational investigation into the human representation and processing of visual information. W.H. Freeman/MIT Press. (Original work published in 1982; 2010 reprint edition by MIT Press).
McClelland, J. L., Botvinick, M. M., Noelle, D. C., Plaut, D. C., Rogers, T. T., Seidenberg, M. S. & Smith, L. B. (2010) Letting structure emerge: Connectionist and dynamical systems approaches to cognition. Trends in Cognitive Sciences 14:348–56.
Navarro, D. J. (2010) Learning the context of a category. In: Advances in neural information processing systems, vol. 23, ed. Lafferty, J., Williams, C. K. I., Shawe-Taylor, J., Zemel, R. & Culotta, A., pp. 1795–803. MIT Press.
Neisser, U. (1967) Cognitive psychology. Appleton-Century-Crofts.
Nosofsky, R. M. (1986) Attention, similarity, and the identification-categorization relationship. Journal of Experimental Psychology: General 115:3957.
Rumelhart, D. E. & McClelland, J. L. (1985) Levels indeed! A response to Broadbent. Journal of Experimental Psychology: General 114:193–97.
Sanborn, A. N., Griffiths, T. L. & Navarro, D. J. (2010a) Rational approximations to rational models: Alternative algorithms for category learning. Psychological Review 117:1144–67.
Schall, J. D. (2004) On building a bridge between brain and behavior. Annual Review of Psychology 55:2350.
Sewell, D. K. & Lewandowsky, S. (2011) Restructuring partitioned knowledge: The role of recoordination in category learning. Cognitive Psychology 62:81122.
Shi, L., Griffiths, T. L., Feldman, N. H. & Sanborn, A. N. (2010) Exemplar models as a mechanism for performing Bayesian inference. Psychonomic Bulletin and Review 17:443–64.
Shiffrin, R. M., Lee, M. D., Kim, W. & Wagenmakers, E. J. (2008) A survey of model evaluation approaches with a tutorial on hierarchical Bayesian methods. Cognitive Science 32:1248–84.
Teller, D. Y. (1984) Linking propositions. Vision Research 10:1233–46.
Thomas, M. S. C. & McClelland, J. L. (2008) Connectionist models of cognition. In: The Cambridge handbook of computational psychology, ed. Sun, R., pp. 2358. Cambridge University Press.
Yang, L.-X. & Lewandowsky, S. (2003) Context-gated knowledge partitioning in categorization. Journal of Experimental Psychology: Learning, Memory, and Cognition 29:663–79.
Yang, L.-X. & Lewandowsky, S. (2004) Knowledge partitioning in categorization: Constraints on exemplar models. Journal of Experimental Psychology: Learning, Memory, and Cognition 30:1045–64.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed