Skip to main content Accessibility help

Bayesian Fundamentalism or Enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition

  • Matt Jones (a1) and Bradley C. Love (a2)


The prominence of Bayesian modeling of cognition has increased recently largely because of mathematical advances in specifying and deriving predictions from complex probabilistic models. Much of this research aims to demonstrate that cognitive behavior can be explained from rational principles alone, without recourse to psychological or neurological processes and representations. We note commonalities between this rational approach and other movements in psychology – namely, Behaviorism and evolutionary psychology – that set aside mechanistic explanations or make use of optimality assumptions. Through these comparisons, we identify a number of challenges that limit the rational program's potential contribution to psychological theory. Specifically, rational Bayesian models are significantly unconstrained, both because they are uninformed by a wide range of process-level data and because their assumptions about the environment are generally not grounded in empirical measurement. The psychological implications of most Bayesian models are also unclear. Bayesian inference itself is conceptually trivial, but strong assumptions are often embedded in the hypothesis sets and the approximation algorithms used to derive model predictions, without a clear delineation between psychological commitments and implementational details. Comparing multiple Bayesian models of the same task is rare, as is the realization that many Bayesian models recapitulate existing (mechanistic level) theories. Despite the expressive power of current Bayesian models, we argue they must be developed in conjunction with mechanistic considerations to offer substantive explanations of cognition. We lay out several means for such an integration, which take into account the representations on which Bayesian inference operates, as well as the algorithms and heuristics that carry it out. We argue this unification will better facilitate lasting contributions to psychological theory, avoiding the pitfalls that have plagued previous theoretical movements.



Hide All
Anderson, J. R. (1990) The adaptive character of thought. Erlbaum.
Anderson, J. R. (1991b) The adaptive nature of human categorization. Psychological Review 98:409–29.
Anderson, J. R., Bothell, D., Lebiere, C. & Matessa, M. (1998) An integrated theory of list memory. Journal of Memory and Language 38:341–80.
Anderson, J. R. & Schooler, L. J. (1991) Reflections of the environment in memory. Psychological Science 2:396408.
Austerweil, J. & Griffiths, T. L. (2008) Analyzing human feature learning as nonparametric Bayesian inference. Advances in Neural Information Processing Systems 21:97104.
Baker, C. L., Saxe, R. & Tenenbaum, J. B. (2009) Action understanding as inverse planning. Cognition 113:329–49.
Baldwin, J. D. & Baldwin, J. I. (1977) The role of learning phenomena in the ontogeny of exploration and play. In: Primate bio-social development: Biological, social and ecological determinants, ed. Chevalier-Skolnikoff, S. & Poirer, F. E., p. 343406. Garland.
Beck, J. M., Ma, W. J., Kiani, R., Hanks, T., Churchland, A. K., Roitman, J., Shadlen, M. N., Latham, P. E. & Pouget, A. (2008) Probabilistic population codes for Bayesian decision making. Neuron 60:1142–52.
Binmore, K. (2009) Rational decisions. Princeton University Press.
Bjorklund, D. F. & Pellegrini, A. D. (2000) Child development and evolutionary psychology. Child Development 71:1607–708.
Boucher, L., Palmeri, T. J., Logan, G. D. & Schall, J. D. (2007) Inhibitory control in mind and brain: An interactive race model of countermanding saccades. Psychological Review 114:376–97.
Bowlby, J. (1969) Attachment and loss, vol. 1: Attachment. Basic Books.
Brighton, H. & Gigerenzer, G. (2008) Bayesian brains and cognitive mechanisms: Harmony or dissonance? In: Bayesian rationality: The probabilistic approach to human reasoning, ed. Oaksford, M. & Chater, N., p. 189208. Oxford University Press.
Brown, S. D. & Steyvers, M. (2009) Detecting and predicting changes. Cognitive Psychology 58:4967.
Buller, D. J. (2005) Adapting minds: Evolutionary psychology and the persistent quest for human nature. MIT Press.
Burgess, N. & Hitch, G. J. (1999) Memory for serial order: A network model of the phonological loop and its timing. Psychological Review 106:551–81.
Busemeyer, J. R. & Johnson, J. G. (2008) Microprocess models of decision making. In: Cambridge handbook of computational psychology, ed. Sun, R., p. 302–21. Cambridge University Press.
Buss, D. M. (1994) The evolution of desire: Strategies of human mating. Basic Books.
Buss, D. M., Haselton, M. G., Shackelford, T. K., Bleske, A. L. & Wakefield, J. C. (1998) Adaptations, exaptations, and spandrels. American Psychologist 53:533–48.
Caramazza, A. & Shelton, J. R. (1998) Domain-specific knowledge systems in the brain: The animate-inanimate distinction. Journal of Cognitive Neuroscience 10:134.
Chater, N. & Manning, C. D. (2006) Probabilistic models of language processing and acquisition. Trends in Cognitive Sciences 10:335–44.
Chater, N. & Oaksford, M. (1999) The probability heuristics model of syllogistic reasoning. Cognitive Psychology 38:191258.
Chater, N. & Oaksford, M. (2008) The probabilistic mind: Prospects for a Bayesian cognitive science. In: The probabilistic mind: Prospects for rational models of cognition, ed. Oaksford, M. & Chater, N., p. 331. Oxford University Press.
Chater, N., Oaksford, M., Nakisa, R. & Redington, M. (2003) Fast, frugal, and rational: How rational norms explain behavior. Organizational Behavior and Human Decision Processes 90:6386.
Chater, N., Reali, F. & Christiansen, M. H. (2009) Restrictions on biological adaptation in language evolution. Proceedings of the National Academy of Sciences USA 106:1015–20.
Chater, N., Tenenbaum, J. & Yuille, A. (2006) Probabilistic models of cognition: Conceptual foundations. Trends in Cognitive Sciences 10(7):287–91.
Chomsky, N. (1959) A review of B. F. Skinner's Verbal Behavior . Language 35:2658.
Clark, D. D. & Sokoloff, L. (1999) Circulation and energy metabolism in the brain. In: Basic neurochemistry: Molecular, cellular and medical aspects, ed. Siegel, G. J., Agranoff, B. W., Albers, R. W., Fisher, S. K. & Uhler, M. D., p. 637–70. Lippincott-Raven.
Clearfield, M. W., Dineva, E., Smith, L. B., Diedrich, F. J. & Thelen, E. (2009) Cue salience and infant perseverative reaching: Tests of the dynamic field theory. Developmental Science 12:2640.
Colunga, E. & Smith, L. (2005) From the lexicon to expectations about kinds: A role for associative learning. Psychological Review 112(2):347–82.
Conati, C., Gertner, A., VanLehn, K. & Druzdzel, M. (1997) On-line student modeling for coached problem solving using Bayesian networks. In: User modeling: Proceedings of the Sixth International Conference, UM97, Berlin, 1997, pp. 231–42, ed. Jameson, A., Paris, C. & Tasso, C.. Springer.
Cosmides, L. & Tooby, J. (1992) Cognitive adaptations for social exchange. In: The adapted mind: Evolutionary psychology and the generation of culture, ed. Barkow, J., Cosmides, L. & Tooby, J.. p. 163228. Oxford University Press.
Cree, G. S. & McRae, K. (2003) Analyzing the factors underlying the structure and computation of the meaning of chipmunk, cherry, chisel, cheese, and cello (and many other such concrete nouns). Journal of Experimental Psychology: General 132:163201.
Crick, F. (1989) The recent excitement about neural networks. Nature 337:129–32.
Czerlinski, J., Gigerenzer, G. & Goldstein, D. G. (1999) How good are simple heuristics? In: Simple heuristics that make us smart, ed. Gigerenzer, G. & Todd, P. M., p. 97118. Oxford University Press.
Danks, D. (2008) Rational analyses, instrumentalism, and implementations. In: The probabilistic mind: Prospects for Bayesian cognitive science, ed. Oaksford, M. & Chater, N., p. 5975. Oxford University Press.
Daugman, J. G. (2001) Brain metaphor and brain theory. In: Philosophy and the neurosciences: A reader, ed. Bechtel, W., Mandik, P., Mundale, J. & Stufflebeam, R. S., p. 2336. Blackwell.
Davis, T. & Love, B. C. (2010) Memory for category information is idealized through contrast with competing options. Psychological Science 21:234–42.
Daw, N. & Courville, A. (2007) The pigeon as particle filter. Advances in Neural Information Processing Systems 20:1528–35.
Daw, N. D., Courville, A. C. & Dayan, P. (2008) Semi-rational models: The case of trial order. In: The probabilistic mind: Prospects for rational models of cognition, ed. Oaksford, M. & Chater, N., p. 431–52. Oxford University Press.
Daw, N. D., Niv, Y. & Dayan, P. (2005) Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience 8:1704–11.
Dawes, R. M. & Corrigan, B. (1974) Linear models in decision making. Psychological Bulletin 81:95106.
Dawkins, R. (1987) The blind watchmaker. W. W. Norton.
Denève, S. (2008) Bayesian spiking neurons. I: Inference. Neural Computation 20:91117.
Denève, S., Latham, P. E. & Pouget, A. (1999) Reading population codes: A neural implementation of ideal observers. Nature Neuroscience 2:740–45.
Dennis, S. & Humphreys, M. S. (1998) Cuing for context: An alternative to global matching models of recognition memory. In: Rational models of cognition, ed. Oaksford, M. & Chater, N., p. 109–27. Oxford University Press.
Devlin, J. T., Gonnerman, L. M., Andersen, E. S. & Seidenberg, M. S. (1998) Category-specific semantic deficits in focal and widespread brain damage: A computational account. Journal of Cognitive Neuroscience 10:7794.
Dickinson, A. M. (2000) The historical roots of organizational behavior management in the private sector: The 1950s–1980s. Journal of Organizational Behavior Management 20(3/4): 958.
Doll, B. B., Jacobs, W. J., Sanfey, A. G. & Frank, M. J. (2009) Instructional control of reinforcement learning: A behavioral and neurocomputational investigation. Brain Research 1299:7494.
Doucet, A., Godsill, S. & Andrieu, C. (2000) On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing 10:197208.
Dunbar, K. (1995) How scientists really reason: Scientific reasoning in real-world laboratories. In: Mechanisms of insight, ed. Sternberg, R. J. & Davidson, J., p. 365–95. MIT Press.
Dyson, F. W., Eddington, A. S. & Davidson, C. (1920) A determination of the deflection of light by the sun's gravitational field, from observations made at the total eclipse of May 29, 1919. Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences 220:291333.
Ein-Dor, T., Mikulincer, M., Doron, G. & Shaver, P. R. (2010) The attachment paradox: How can so many of us (the insecure ones) have no adaptive advantages? Perspectives on Psychological Science 5(2):123–41.
Einstein, A. (1916) Die Grundlage der allgemeinen Relativitätstheorie [The foundation of the generalized theory of relativity]. Annalen der Physik 354(7):769822.
Elman, J. L. (1990) Finding structure in time. Cognitive Science 14:179211.
Elman, J. L. (1993) Learning and development in neural networks: The importance of starting small. Cognition 48:7199.
Engelfriet, J. & Rozenberg, G. (1997) Node replacement graph grammars. In: Handbook of graph grammars and computing by graph transformation, vol. 1, ed. Rozenberg, G., p. 194. World Scientific.
Estes, W. K. (1957) Theory of learning with constant, variable, or contingent probabilities of reinforcement. Psychometrika 22:113–32.
Fitelson, B. (1999) The plurality of Bayesian measures of confirmation and the problem of measure sensitivity. Philosophy of Science 66:362–78.
Fodor, J. A. & Pylyshyn, Z. (1988) Connectionism and cognitive architecture: A critical analysis. Cognition 28: 371.
Frank, M. J., Seeberger, L. & O'Reilly, R. C. (2004) By carrot or by stick: Cognitive reinforcement learning in Parkinsonism. Science 306:1940–43.
Gabbay, D., Hogger, C. & Robinson, J., eds. (1994) Handbook of logic in artificial intelligence and logic programming, vol. 3: Nonmonotonic reasoning and uncertain reasoning. Oxford University Press.
Geisler, W. S. & Diehl, R. L. (2003) A Bayesian approach to the evolution of perceptual and cognitive systems. Cognitive Science 27:379402.
Geisler, W. S., Perry, J. S., Super, B. J. & Gallogly, D. P. (2001) Edge co-occurrence in natural images predicts contour grouping performance. Vision Research 41:711–24.
Geman, S., Bienenstock, E. & Doursat, R. (1992) Neural networks and the bias/variance dilemma. Neural Computation 4:158.
Geman, S. & Geman, D. (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6:721–41.
Gentner, D. (1983) Structure-mapping: A theoretical framework for analogy. Cognitive Science 7:155–70.
Gentner, D., Brem, S., Ferguson, R. W., Markman, A. B., Levidow, B. B., Wolff, P. & Forbus, K. D. (1997) Analogical reasoning and conceptual change: A case study of Johannes Kepler. Journal of the Learning Sciences 6(1):340.
Gibson, J. J. (1979) The ecological approach to visual perception. Houghton Mifflin.
Gigerenzer, G. & Brighton, H. (2009) Homo heuristicus: Why biased minds make better inferences. Topics in Cognitive Science 1:107–43.
Gigerenzer, G. & Todd, P. M. (1999) Simple heuristics that make us smart. Oxford University Press.
Gold, J. I. & Shadlen, M. N. (2001) Neural computations that underlie decisions about sensory stimuli. Trends in Cognitive Sciences 5:1016.
Goodman, N. D., Baker, C. L., Bonawitz, E. B., Mansinghka, V. K., Gopnik, A., Wellman, H., Schulz, L. E. & Tenenbaum, J. B. (2006) Intuitive theories of mind: A rational approach to false belief. In: Proceedings of the Twenty-Eighth Annual Conference of the Cognitive Science Society, Vancouver, Canada, ed. Sun, R., p. 1382–87. Cognitive Science Society.
Goodman, N. D., Tenenbaum, J. B., Feldman, J. & Griffiths, T. L. (2008b) A rational analysis of rule-based concept learning. Cognitive Science 32(1):108–54.
Gottlieb, G. (1992) Individual development and evolution: The genesis of novel behavior. Oxford University Press.
Gould, S. J. & Lewontin, R. (1979) The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society of London Series B: Biological Sciences 205:581–98.
Green, D. M. & Swets, J. A. (1966) Signal detection theory and psychophysics. John Wiley.
Griffiths, T. L. & Ghahramani, Z. (2006) Infinite latent feature models and the Indian buffet process. In: Advances in neural information processing systems, vol. 18, ed. Weiss, J., Schölkopf, B. & Platt, J., p. 475–82. MIT Press.
Griffiths, T. L., Sanborn, A. N., Canini, K. R. & Navarro, D. J. (2008b) Categorization as nonparametric Bayesian density estimation. In: The probabilistic mind: Prospects for rational models of cognition, ed. Oaksford, M. & Chater, N.. Oxford University Press.
Griffiths, T. L., Steyvers, M. & Tenenbaum, J. B. (2007) Topics in semantic representation. Psychological Review 114:211–44.
Griffiths, T. L. & Tenenbaum, J. B. (2006) Optimal predictions in everyday cognition. Psychological Science 17(9):767–73.
Griffiths, T. L. & Tenenbaum, J. B. (2009) Theory-based causal induction. Psychological Review 116:661716.
Guttman, N. & Kalish, H. I. (1956) Discriminability and stimulus generalization. Journal of Experimental Psychology 51:7988.
Hamilton, W. D. (1964) The genetical theory of social behavior. Journal of Theoretical Biology 7:152.
Hastings, W. K. (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97109.
Hebb, D. O. (1949) The organization of behavior: A neuropsychological theory. John Wiley.
Hogarth, R. M. & Karelaia, N. (2005) Ignoring information in binary choice with continuous variables: When is less “more”? Journal of Mathematical Psychology 49:115–24.
Horgan, J. (1999) The undiscovered mind: How the human brain defies replication, medication, and explanation. Psychological Science 10:470–74.
Hornik, K., Stinchcombe, M. & White, H. (1989) Multilayer feedforward networks are universal approximators. Neural Networks 2:359–66.
Huber, D. E., Shiffrin, R. M., Lyle, K. B. & Ruys, K. I. (2001) Perception and preference in short-term word priming. Psychological Review 108:149–82.
Hummel, J. E. & Biederman, I. (1992) Dynamic binding in a neural network for shape recognition. Psychological Review 99:480517.
Jaynes, E. T. (1968) Prior probabilities. IEEE Transactions on Systems Science and Cybernetics 4:227–41.
Jeffreys, H. (1946) An invariant form for the prior probability in estimation problems. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences 186:453–61.
Joanisse, M. F. & Seidenberg, M. S. (1999) Impairments in verb morphology after brain injury: A connectionist model. Proceedings of the National Academy of Sciences USA 96:7592–97.
Joanisse, M. F. & Seidenberg, M. S. (2003) Phonology and syntax in specific language impairment: Evidence from a connectionist model. Brain and Language 86:4056.
Johnson, M. H. (1998) The neural basis of cognitive development. In: Handbook of child psychology, vol. 2: Cognition, perception, and language, ed. Kuhm, D. & Siegler, R. S., p. 149. Wiley.
Jones, M. & Sieck, W. R. (2003) Learning myopia: An adaptive recency effect in category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition 29:626–40.
Jones, M. & Zhang, J. (2003) Which is to blame: Instrumental rationality, or common knowledge? Behavioral and Brain Sciences 26:166–67.
Kant, I. (1787/1961) Critique of pure reason, trans. Smith, N. K.. St. Martin's Press. (Original work published in 1787).
Kemp, C. & Tenenbaum, J. B. (2008) The discovery of structural form. Proceedings of the National Academy of Sciences USA 105:10687–692.
Kemp, C., Perfors, A. & Tenenbaum, J. B. (2007) Learning overhypotheses with hierarchical Bayesian models. Developmental Science 10:307–21.
Köver, H., Bao, S. (2010) Cortical plasticity as a mechanism for storing Bayesian priors in sensory perception. PLoS ONE 5(5):e10497.
Krugman, P. (2009) How did economists get it so wrong? New York Times, MM36, September 2.
Kurz, E. M. & Tweney, R. D. (1998) The practice of mathematics and science: From calculus to the clothesline problem. In: Rational models of cognition, ed. Oaksford, M. & Chater, N., p. 415–38. Oxford University Press.
Lee, M. D. & Sarnecka, B. W. (2010) A model of knower-level behavior in number-concept development. Cognitive Science 34:5167.
Love, B. C. (2002) Comparing supervised and unsupervised category learning. Psychonomic Bulletin and Review 9:829–35.
Lucas, C., Griffiths, T. L., Xu, F. & Fawcett, C. (2009) A rational model of preference learning and choice prediction by children. Advances in Neural Information Processing Systems 21:985–92.
Luce, R. D. (1963) Detection and recognition. In: Handbook of mathematical psychology, ed. Luce, R. D., Bush, R. R. & Galanter, E., p. 103–89. John Wiley.
Machery, E. & Barrett, C. (2006) Debunking adapting minds. Philosophy of Science 73:232–46.
Marcus, G. F. (1998) Rethinking eliminative connectionism. Cognitive Psychology 37:243–82.
Marcus, G. F. (2008) Kluge: The haphazard construction of the human mind. Houghton Mifflin.
Markman, A. B. & Ross, B. H. (2003) Category use and category learning. Psychological Bulletin 129:592615.
Marr, D. (1982) Vision: A computational investigation into the human representation and processing of visual information. W. H. Freeman.
Mayr, E. (1982) The growth of biological thought: Diversity, evolution, and inheritance. Harvard University Press.
McClelland, J. L., Rumelhart, D. E. & the PDP Research Group. (1986) Parallel distributed processing: Explorations in the microstructure of cognition. Vol. 2: Psychological and biological models. MIT Press.
McCulloch, W. & Pitts, W. (1943) A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 7:115–33.
McKenzie, C. R. M. & Mikkelsen, L. A. (2007) A Bayesian view of covariation assessment. Cognitive Psychology 54:3361.
McNamara, J. M. & Houston, A. I. (2009) Integrating function and mechanism. Trends in Ecology and Evolution 24:670–75.
Michaels, C. F. & Carello, C. (1981) Direct perception. Prentice-Hall.
Miller, E. K. & Cohen, J. D. (2001) An integrative theory of prefrontal cortex function. Annual Review of Neuroscience 24:167202.
Miller, G. A. (2003) The cognitive revolution: A historical perspective. Trends in Cognitive Sciences 7:141–44.
Minsky, M. & Papert, S. A. (1969) Perceptrons: An introduction to computational geometry. MIT Press.
Mortimer, D., Feldner, J., Vaughan, T., Vetter, I., Pujic, Z., Rosoff, W. J., Burrage, K., Dayan, P., Richards, L. J. & Goodhill, G. J. (2009) Bayesian model predicts the response of axons to molecular gradients. Proceedings of the National Academy of Sciences USA 106:10296–301.
Mozer, M. C., Pashler, H. & Homaei, H. (2008) Optimal predictions in everyday cognition: The wisdom of individuals or crowds? Cognitive Science 32:1133–47.
Murphy, G. L. (1993) A rational theory of concepts. Psychology of Learning and Motivation 29:327–59.
Nersessian, N. J. (1986) A cognitive-historical approach to meaning in scientific theories. In: The process of science: Contemporary philosophical approaches to understanding scientific practice, ed. Nersessian, N. J.. Martinus Nijhoff.
Newell, A. & Simon, H. A. (1972) Human problem solving. Prentice-Hall.
Newport, E. L. (1990) Maturational constraints on language learning. Cognitive Science 14:1128.
Nosofsky, R. M., Palmeri, T. J. & Mckinley, S. C. (1994) Rule-plus-exception model of classification learning. Psychological Review 104:266300.
Oaksford, M. & Chater, N. (1994) A rational analysis of the selection task as optimal data selection. Psychological Review 101:608–31.
Oaksford, M. & Chater, N. (1998a) An introduction to rational models of cognition. In: Rational models of cognition, ed. Oaksford, M. & Chater, N., p. 118. Oxford University Press.
Oaksford, M. & Chater, N. (2007) Bayesian rationality: The probabilistic approach to human reasoning. Oxford University Press.
Oaksford, M. & Chater, N. (2010) Conditionals and constraint satisfaction: Reconciling mental models and the probabilistic approach? In: Cognition and conditionals: Probability and logic in human thinking, ed. Oaksford, M. & Chater, N., p. 309–34. Oxford University Press.
Oppenheim, R. W. (1981) Ontogenetic adaptations and retrogressive processes in the development of the nervous system and behavior. In: Maturation and development: Biological and psychological perspectives, ed. Connolly, K. J. & Prechtl, H. F. R., p. 73108. International Medical.
Pinker, S. (1995) The language instinct: How the mind creates language. Perennial.
Pinker, S. (2002) The blank slate: The modern denial of human nature. Viking.
Pinker, S. & Prince, A. (1988) On language and connectionism: Analysis of a parallel distributed processing model of language acquisition. Cognition 28:73193.
Pitt, M. A., Myung, I. J. & Zhang, S. (2002) Toward a method of selecting among computational models of cognition. Psychological Review 109:472–91.
Plaut, D. C., McClelland, J. L., Seidenberg, M. S. & Patterson, K. (1996) Understanding normal and impaired word reading: Computational principles in quasi-regular domains. Psychological Review 103:56115.
Pollack, J. B. (1990) Recursive distributed representations. Artificial Intelligence 46:77105.
Pothos, E. M. & Chater, N. (2002) A simplicity principle in unsupervised human categorization. Cognitive Science 26:303–43.
Rachman, S. (1997) The evolution of cognitive behaviour therapy. In: Science and practice of cognitive behaviour therapy, ed. Clark, D., Fairburn, C. G. & Gelder, M. G., p. 126. Oxford University Press.
Raiffa, H. & Schlaifer, R (1961) Applied statistical decision theory. Harvard University Press.
Ramscar, M., Yarlett, D., Dye, M., Denny, K. & Thorpe, K. (2010) The effects of feature-label-order and their implications for symbolic learning. Cognitive Science 34:149.
Ravi, S. & Knight, K. (2009) Minimized models for unsupervised part-of-speech tagging. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the Association for Computational Linguistics (ACL) and the 4th International Joint Conference on Natural Language Processing of the AFNLP, ed. Su, K.-Y., p. 504–12. Association for Computational Linguistics. Available at:
Ricci, G. & Levi-Civita, T. (1900) Méthodes de calcul différentiel absolu et leurs applications [Methods of absolute differential calculus and their applications]. Mathematische Annalen 54(1–2):125201.
Rogers, T. T. & Plaut, D. C. (2002) Connectionist perspectives on category-specific deficits. In: Category-specificity in brain and mind, ed. Forde, E. & Humphreys, G. W., p. 251–89. Psychology Press.
Rosch, E. (1978) Principles of categorization. In: Cognition and categorization, ed. Rosch, E. & Lloyd, B. B., p. 2748. Erlbaum.
Rosenblatt, F. (1962) Principles of neurodynamics: Perceptrons and the theory of brain mechanisms. Spartan Books.
Rougier, N. P., Noelle, D., Braver, T. S., Cohen, J. D. & O'Reilly, R. C. (2005) Prefrontal cortex and the flexibility of cognitive control: Rules without symbols. Proceedings of the National Academy of Sciences USA 102:7338–43.
Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986) Learning representations by back-propagating errors. Nature 323:533–36.
Rumelhart, D. E., McClelland, J. L. & the PDP research group. (1986) Parallel distributed processing: Explorations in the microstructure of cognition. Vol. 1: Foundations. MIT Press.
Sakamoto, Y., Jones, M. & Love, B. C. (2008) Putting the psychology back into psychological models: Mechanistic versus rational approaches. Memory and Cognition 36(6):1057–65.
Sanborn, A. N., Griffiths, T. L. & Navarro, D. J. (2010a) Rational approximations to rational models: Alternative algorithms for category learning. Psychological Review 117:1144–67.
Sanborn, A. N., Griffiths, T. L. & Shiffrin, R. M. (2010b) Uncovering mental representations with Markov chain Monte Carlo. Cognitive Psychology 60:63106.
Sargent, T. J. (1993) Bounded rationality in macroeconomics. Oxford University Press.
Savage, L. J. (1954) The foundations of statistics. John Wiley/Dover.
Schwarz, G. E. (1978) Estimating the dimension of a model. Annals of Statistics 6(2):461–64.
Shafto, P., Kemp, C., Mansinghka, V. M. & Tenenbaum, J. B. (2011) A probablistic model of cross-categorization. Cognition. 120:125.
Shiffrin, R. M. & Steyvers, M. (1998) The effectiveness of retrieval from memory. In: Rational models of cognition, ed. Oaksford, M. & Chater, N., p. 7395. Oxford University Press.
Simon, H. A. (1957a) A behavioral model of rational choice. In: Models of man, social and rational: Mathematical essays on rational human behavior in a social setting, ed. Simon, H. A., p. 241–60. John Wiley.
Skinner, B. F. (1938) The behavior of organisms: An experimental analysis. Appleton-Century.
Skinner, B. F. (1957) Verbal behavior. Appleton-Century-Crofts.
Skinner, B. F. (1958) Reinforcement today. American Psychologist 13:9499.
Sloman, S. A. & Fernbach, P. M. (2008) The value of rational analysis: An assessment of causal reasoning and learning. In: The probabilistic mind: Prospects for rational models of cognition, ed. Chater, N. & Oaksford, M, p. 485500. Oxford University Press.
Smith, D. L. (2007) Beyond Westemarck: Can shared mothering or maternal phenotype matching account for incest avoidance? Evolutionary Psychology 5:202–22.
Smith, L. B., Jones, S. S., Landau, B., Gershkoff-Stowe, L. & Samuelson, L. (2002) Object name learning provides on-the-job training for attention. Psychological Science 13:1319.
Smith, P. K. (1982) Does play matter? Functional and evolutionary aspects of animal and human play. Behavioral and Brain Sciences 5:139–84.
Smolensky, P. (1988) On the proper treatment of connectionism. Behavioral and Brain Sciences 11:123.
Smolin, L. (2006) The trouble with physics: The rise of string theory, the fall of a science, and what comes next. Houghton Mifflin Harcourt.
Sobel, D. M., Tenenbaum, J. B. & Gopnik, A. (2004) Children's causal inferences from indirect evidence: Backwards blocking and Bayesian reasoning in preschoolers. Cognitive Science 28(3):303–33.
Soltani, A. & Wang, X.-J. (2010) Synaptic computation underlying probabilistic inference. Nature Neuroscience 13(1):112–19.
Spencer, J. P., Perone, S. & Johnson, J. S. (2009) The dynamic field theory and embodied cognitive dynamics. In: Toward a unified theory of development: Connectionism and dynamic systems theory reconsidered, ed. Spencer, J. P., Thomas, M. S. & McClelland, J. L., p. 86118. Oxford University Press.
Sperber, D. & Hirschfeld, L. A. (2003) The cognitive foundations of cultural stability and diversity. Trends in Cognitive Sciences 8:4046.
Stankiewicz, B. J., Legge, G. E., Mansfield, J. S. & Schlicht, E. J. (2006) Lost in virtual space: Studies in human and ideal spatial navigation. Journal of Experimental Psychology: Human Perception and Performance 32:688704.
Steyvers, M., Lee, M. D. & Wagenmakers, E.-J. (2009) A Bayesian analysis of human decision-making on bandit problems. Journal of Mathematical Psychology 53:168–79.
Steyvers, M., Tenenbaum, J. B., Wagenmakers, E.-J. & Blum, B. (2003) Inferring causal networks from observations and interventions. Cognitive Science 27:453–89.
Stigler, S. M. (1961) The economics of information. Journal of Political Economy 69:213–25.
Tenenbaum, J. B. & Griffiths, T. L. (2001) Generalization, similarity, and Bayesian inference. Behavioral and Brain Sciences 24(4):629–40.
Tenenbaum, J. B., Griffiths, T. L. & Kemp, C. (2006) Theory-based Bayesian models of inductive learning and reasoning. Trends in Cognitive Sciences 10:309–18.
Thagard, P. (1989) Explanatory coherence. Behavioral and Brain Sciences 12:435502.
Thaler, R. H. & Sunstein, C. R. (2008) Nudge: Improving decisions about health, wealth, and happiness. Yale University Press.
Thibaux, R. & Jordan, M. I. (2007) Hierarchical beta processes and the Indian buffet process. In: Proceedings of the Tenth Conference on Artificial Intelligence and Statistics (AISTATS), ed. Meila, M. & Shen, X.. Society for Artificial Intelligence and Statistics. (Online Publication). Available at:
Thompson-Schill, S., Ramscar, M. & Chrysikou, M. (2009) Cognition without control: When a little frontal lobe goes a long way. Current Directions in Psychological Science 8:259–63.
Tooby, J. & Cosmides, L. (2005) Conceptual foundations of evolutionary psychology. In: The handbook of evolutionary psychology, ed. Buss, D. M., p. 567. Wiley.
Tversky, A. & Kahneman, D. (1974) Judgment under uncertainty: Heuristics and biases. Science 185:1124–31.
Vul, E., Frank, M. C., Alvarez, G. A. & Tenenbaum, J. B. (2009) Explaining human multiple object tracking as resource-constrained approximate inference in a dynamic probabilistic model. Advances in Neural Information Processing Systems 22:1955–63.
Watson, J. B. (1913) Psychology as the behaviorist views it. Psychological Review 20:158–77.
Wertheimer, M. (1923/1938) Laws of organization in perceptual forms. In: A source book of Gestalt psychology, ed. & trans. Ellis, W., p. 7188. Routledge & Kegan Paul. (Original work published in 1923).
Wilder, M. H., Jones, M. & Mozer, M. C. (2009) Sequential effects reflect parallel learning of multiple environmental regularities. Advances in Neural Information Processing Systems 22:2053–61.
Woit, P. (2006) Not even wrong: The failure of string theory and the search for unity in physical law. Basic Books.
Wolpert, D. (1996) The lack of a priori distinctions between learning algorithms. Neural Computation 8:1341–90.
Wood, J. N. & Grafman, J. (2003) Human prefrontal cortex: Processing and representational perspectives. Nature Reviews: Neuroscience 4:129–47.
Xu, F. & Tenenbaum, J. B. (2007b) Word learning as Bayesian inference. Psychological Review 114(2):245–72.
Yamauchi, T. & Markman, A. B. (1998) Category learning by inference and classification. Journal of Memory and Language 39:124–48.
Yu, A. & Cohen, J. (2008) Sequential effects: Superstition or rational behavior? Advances in Neural Information Processing Systems 21:1873–80.


Related content

Powered by UNSILO

Bayesian Fundamentalism or Enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition

  • Matt Jones (a1) and Bradley C. Love (a2)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.