Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-02T22:12:07.525Z Has data issue: false hasContentIssue false

The chronobiological pattern of opiate-related hyperphagia is different from the dual periodicity of monotonous food intake

Published online by Cambridge University Press:  04 February 2010

M. Apfelbaum
Affiliation:
Laboratoiy of Human Nutrition, Department of Physiology, Faculty Xavier Bichat, 75018 Paris, France
A. Mandenoff
Affiliation:
Laboratoiy of Human Nutrition, Department of Physiology, Faculty Xavier Bichat, 75018 Paris, France

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Continuing Commentary
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Apfelbaum, M. & Mandenoff, A. (1981a) Circadian rhythms. In: The body weight regulatory system: Normal and disturbed mechanisms, ed. Cioffi, L. A., James, W. P. T. & Van Itallie, T. B., pp. 299304. Raven Press. [MA]Google Scholar
Apfelbaum, M. & Mandenoff, A. (1981b) Naltrexone suppresses hyperphagia induced in the rat by a highly palatable diet. Pharmacology, Biochemistry and Behavior 15:8991. [MA]Google Scholar
Cohn, C. & Joseph, D. (1962) Influence of body weight and body fist on appetite of “normal” lean and obese rats. Yale Journal of Biology and Medicine 34:518607. [BJR]Google Scholar
Faust, I. (1980) Nutrition and the fat cell. International Journal of Obesity 4:314–21. [JLM, BJR]Google Scholar
Frederickson, R. C. A., Burgus, V. & Edwards, D. J. (1977) Hyperalgesia induced by naloxone follows diurnal rhythms in responsivity to painful stimuli. Science 198:756–58. [MA]Google Scholar
Hell, N. S., Oliveira, L. B. C., Dolnikoff, M. S., Scivoletto, R. & Timo-laria, C. (1980) Changes of carbohydrate metabolism caused by food restriction as detected by insulin administration. Physiology & Behavior 24:473–77. [CT-I]Google Scholar
Kadekaro, M., Timo-laria, C. & Valle, L. E. R. (1972) Site of action of 2-deoxy-D-glucose mediating gastric secretion in the cat. Journal of Physiology, London 221:113. [CT-I]Google Scholar
Kadekaro, M., Timo-laria, C. & Valle, L. E. R. (1975) Neural systems responsible for gastric secretion provoked by 2-deoxy-D-glucose cytoglucopoenia. Journal of Physiology, London 252:565–84. [CT-I]Google Scholar
Kadekaro, M., Timo-laria, C. & Vicentini, M. L. M. (1977) Regulation of gastric secretion by the central nervous system, In: Nerves and the gut, ed. Brooks, F. P. & Evers, P. W., pp. 377427. Charles B. Slack. [CT-I]Google Scholar
Kadekaro, M., Timo-laria, C. & Vicentini, M. L. M. (1980) Gastric secretion provoked by functional cytoglucopoenia in the nuclei of the solitary tract in the cat. Journal of Physiology, London 299:397407. [JLM, CT-I]Google Scholar
Larue-Achagiotis, C. & Le, Magnen J. (1983) Fast-induced changes in plasma glucose, insulin and free flitty acid concentration compared in rats during the night and day. Physiology & Behavior 30, in press. [JLM]CrossRefGoogle Scholar
Le, Magnen J. (1956) Hyperphagie provoquée chez le rat blanc par altération do mécanisme de satiété périphérique. Comptes rendus de Ia Société de Biologie 150:3235. [BJR]Google Scholar
Le, Magnen J. (1981) The metabolic basis of dual periodicity of feeding in rats. Behavioral and Brain Sciences 4:561–75. [MA, BJR, CT-I]Google Scholar
Le, Magnen J. & Devos, M. (1983) Meal to meal energy balance in rats. Physiology & Behavior, in preparation. [JLM]CrossRefGoogle Scholar
Le, Magnen J., Devos, M. & Larue-Achagiotis, C. (1980) Food deprivation induced parallel changes in blood glucose, plasma free fatty acids and feeding during two parts of the diurnal cycle in rats. Neuroscience and Biobehavioral Review 4 (suppl):1724. [JLM]Google Scholar
Le, Magnen J., Marfaing-Jallat, P., Micelli, D. & Devos, M. (1980) Pain modulating and reward systems: A single brain mechanism? Pharmacology, Biochemistry, and Behavior 12:729–33. [JLM]Google Scholar
Lima, F. B., Hell, N. S., Tirno-laria, C., Dolnikoff, M. S. & Pupo, A. A. (1982) Carbohydrate metabolism and food intake in food restricted rats. The effects of an unexpected meal. Submitted to Physiology & Behavior. [CT-I]CrossRefGoogle Scholar
Lima, F. B., Hell, N. S., Tirno-laria, C., Scivoletto, R., Dolnikoff, M. S. & Pupo, A. A. (1981) Metabolic consequences of food restriction in rats. Physiology & Behavior 27:115–23. [CT-I]CrossRefGoogle ScholarPubMed
Louis-Sylvestre, J. (1983a) Dietary versus sensory factors in cafeteria-induced obesity. In preparation. [JLM]Google Scholar
Louis-Sylvestre, J. (1983b) Phase céphalique de sécrétion d'insuline et variété des aliments au cours du repas chez le rat. In preparation. [JLM]Google Scholar
Louis-Sylvestre, J. & Le, Magnen J. (1980) A fall in blood glucose level precedes meal onset in free feeding rats. Neurosciencc and Biobehavioral Review 4 (supp.1):1316. [JLM]CrossRefGoogle ScholarPubMed
Mandenoff, A., Lenoir, T. & Apfelbaum, M. (1982) Tardy occurrence of adipocyte hyperplasia in cafeteria fed rats. American Journal of Physiology 242:349–51. [JLM]Google Scholar
Ponkos, K. P., Booth, C. & Van Itallie, T. B. (1977) Effect of covert nutritive dilution on the spontaneous food intake of obese individuals: A pilot study. American Journal of Clinical Nutrition 30:1638–44. [BJR]Google Scholar
Porikos, K. P., Hesser, M. F. & Van Itallie, T. B. (1982) Caloric regulation in normal-weight men maintained on a palatable diet of conventional foods. Physiology & Behavior 29:293300. [BJR]Google Scholar
Powley, T. L. & Laughton, W. (1981) Neural pathways involved in the hypothalamic integration of autonomic responses. Diabetologia 30:378–87. [JLM]Google Scholar
Ritter, R. C., Slusser, P. G. & Stone, S. (1981) Glucoreceptors controlling feeding and blood glucose: Location in the hindbrain. Science 213:451–53. [JLM]Google Scholar
Rodgers, P. J. & Blundell, J. E. (1980) Investigation of food selection and isseal parameters during the development of dietary induced obesity. Appetite 1:8588. [JLM]Google Scholar
Rolls, B. J. (1979) How variety and palatability can stimulate appetite. Nutrition Bulletin 5:7886. [BJR]Google Scholar
Rolls, B. J., Rolls, E. T., Rowe, E. A. & Sweeney, K. (1981) Sensory specific satiety in man. Physiology & Behavior 27:137–42. [JLM, BJR]Google Scholar
Rolls, B. J. & Rowe, E. A. (1977) Dietary obesity: Permanent changes in body weight. Journal of Physiology, London 272:2P. [BJR]Google Scholar
Rolls, B. J., Rowe, E. A., Rolls, E. T., Kingston, B., Megson, A. & Gunary, R. (1981) Variety in a meal enhances food intake in man. Physiology and Behavior 26:215–21. [JLM. BJR]CrossRefGoogle Scholar
Rolls, B. J., Rowe, E. A. & Turner, B. C. (1980) Persistent obesity in rats following a period of consumption of a mixed, high-energy diet. Journal of Physiology, London 298:415–27. [MA, JLM, BJR]Google Scholar
Rolls, E. T. (19811) Central nervous mechanisms related to feeding and appetite. British Medical Bulletin 37:131–34. [BJR]Google Scholar
Rolls, E. T. & Rolls, B. J. (1977) Activity of neurones in sensory, hypothalamic and motor areas during feeding in the monkey. In: Food intake and the chemical senses, ed. Katsuki, Y., Sato, M., Takagi, S. & Oomura, Y., pp. 525–40. University of Tokyo Press. [JLM, BJR]Google Scholar
Rolls, E. T. & Rolls, B. J. (1982) Brain mechanisms involved in feeding. In: Psychobiology of human food selection, ed. Barker, L. M.. A.V.I. Publishing Co. [BJR]Google Scholar
Rothwell, N. J. & Stock, M. J. (1979) A role for brown adipose tissue in diet- induced thermogenesis. Nature 281:3135. [MA, BJR]Google Scholar
Sclafani, A. & Springer, D. (1976) Dietary obesity in adult rats: Similarities hypothalamic and human obesity syndromes. Physiology & Behavior 17:461–71. [MA, BJR]Google Scholar
Timo-laria, C. & Kadekaro, M. (1977) Rhomboencephalic reflex loops involved in vegetative response to cytoglucopoenia. Symposium on food and water intake, Gif-sur-Yvette. [JLM, CT-I]Google Scholar
Van Houten, M. & Posner, B. I. (1981) Cellular basis of direct insulin action in the central nervous system. Diabetologia 20:255–67. [JLM]Google Scholar
Wise, R. A., Spindler, J., deWit, H. & Gerber, G. J. (1978) Neuroleptic induced “anhedonia” in rats: Pimozide blocks reward quality of food. Science 201:262–64. [JLM]CrossRefGoogle ScholarPubMed
Xenakis, S. & Sclafani, A. (1982) The dopaminergic mediation of a sweet reward in normal and VMH hyperphagic rats. Pharmacology, Biochemistry and Behavior 16:293302. [JLM]CrossRefGoogle ScholarPubMed