Skip to main content

Neuroethology of releasing mechanisms: Prey-catching in toads

  • Jörg-Peter Ewert (a1)

“Sign stimuli” elicit specific patterns of behavior when an organism's motivation is appropriate. In the toad, visually released prey-catching involves orienting toward the prey, approaching, fixating, and snapping. For these action patterns to be selected and released, the prey must be recognized and localized in space. Toads discriminate prey from nonprey by certain spatiotemporal stimulus features. The stimulus-response relations are mediated by innate releasing mechanisms (RMs) with recognition properties partly modifiable by experience. Striato-pretecto-tectal connectivity determines the RM's recognition and localization properties, whereas medialpallio-thalamo-tectal circuitry makes the system sensitive to changes in internal state and to prior history of exposure to stimuli. RMs encode the diverse stimulus conditions referring to the same prey object through different combinations of “specialized” tectal neurons, involving cells selectively tuned to prey features. The prey-selective neurons express the outcome of information processing in functional units consisting of interconnected cells. Excitatory and inhibitory interactions among feature-sensitive tectal and pretectal neurons specify the perceptual operations involved in distinguishing the prey from its background, selecting its features, and discriminating it from predators. Other connections indicate stimulus location. The results of these analyses are transmitted by specialized neurons projecting from the tectum to bulbar/spinal motor systems, providing a sensorimotor interface. Specific combinations of such projective neurons – mediating feature- and space-related messages – form “command releasing systems” that activate corresponding motor pattern generators for appropriate prey-catching action patterns.

Hide All
Akert K. (1949) Der visuelle Greifreflex. Helvetica Physiologica Pharmacologica Acta 7:112–34. [aJ-PE]
Akins K. (1986) On piranhas, narcissim, and mental representation. CCM-86–2, Center for Cognitive Studies, Tufts University. [DD]
Allman J, Miezin F. & McGuinnes E. (1985) Stimulus specific responses from beyond the classical receptive field: Neurophysiological mechanisms for local-global comparisons in visual neurons. Annual Review of Neuroscience 8:407–30. [DI]
an der Heiden U. & Roth G. (1983) Cooperative neural processes in amphibian visual prey recognition. In: Synergetics of the brain, ed. Basar E., Flohr H.Haken H. & Mandell A. J.. Springer. [GR]
Antal M., Matsumoto N. & Székely G. (1986) Tectal neurons of the frog: Intracellular recording and labeling with cobalt electrodes. Journal of Comparative Neurology 246:238–53. [aJ-PE]
Arbib M. A. (1982) Modelling neural mechanisms of visuomotor coordination in frog and toad. In: Competition and cooperation in neural nets, ed. Amari S. & Arbib M. A..Springer-verlag. [aJ-PE]
Atkins G., Ligman S., Burghardt F. & Stout J. (1984) Changes in phonotaxis by the female cricket Acheta domesticus L. after killing identified acoustic interneurons. Journal of Comparative Physiology 154:795804. [JMC]
Autrum H. (1959) Das Fehlen unwillkürlicher Augenbewegungen beim Frosch. Die Naturwissenschaften 46:436. [aJ-PE]
Baerends G. P. (1976) The functional organization of behaviour. Animal Behaviour 24:726–38. [aJ-PE]
Baerends G. P. (1985) Do the dummy experiments with sticklebacks support the IRMconcept? Behaviour 93:258–77. [GPB]
Baerends G. P. & Drent R. H., eds. (1982) The herring gull and its egg. Part 2: The responsiveness to egg-features. Behaviour 82: 1416. [GPB]
Barlow G. W. (1977) Modal action patterns. In: How animals communicate, ed. Sebeok T. A.. University of Indiana Press. [rJ-PE]
Barlow H. B. (1953) Summation and inhibition in the frog's retina. Journal of Physiology (London) 119:6988. [aJ-PE]
Barlow H. B. (1985a) The twelfth Bartlett Memorial Lecture: The role of single neurons in the psychology of perception. Quarterly Journal of Experimental Biology 37(A): 121–45. [aJ-PE]
Barlow H. B. (1985b) The role of nature, nurture, and intelligence in pattern recognition. Pontificiae Academiae Scientiarum Scripta Varia 54. Ex Aedibus Academicis in Civitate Vaticana Roma 1985. [aJ-PE]
Bechterev W. (1884) Über die Funktion der Vierhügel. Pflügers Archiv der gesamten Physiologie des Menschen und der Tiere 73:501/34. [aJ-PE]
Beck A. & Ewert J.-P. (1979) Prey selection by toads (Bufo bufo L.) in response to configurational stimuli moved in the visual field z, y-coordinates. Journal of Comparative Physiology 129:207–9. [aJ-PE]
Berkinblit M. B., Feldman A. G. & Fukson O. I. (1986) Adaptability of innate motor patterns and motor control mechanisms. Behavioral and Brain Sciences 9:585–38. [JCF]
Berridge K. C. & Fentress J. C. (1986) Contextual control of trigeminal sensorimotor function. Journal of Neuroscience 6:325–30. [JCF]
Bieger D. & Neuman R. S. (1984) Selective accumulation of hydroxytryptamines by frogs tectal neurons. Neuroscience 12:1167–77. [aJ-PE]
Birukow G. & Meng M. (1955) Eine neue Methode zur Prufung des Gesichtssinnes bei Amphibien. Naturwissenschaften 42:652–53. [aJ-PE]
Bohm D. (1969) Some remarks on the notion of order. Further remarks on order. In: Towards a theoretical biology, vol. 2, ed. Waddington C. H.. Aldine. [JCF]
Borchers H.-W. (1982) Correlation between behavior patterns and single unit responses from the optic tectum in the freely moving toad (Bufo bufo). In: Progress in biocybernetics and systems research, vol. 9, ed. Trappl R., Ricciardi L. & Pask G.. McGraw-Hill. [aJ-PE]
Borchers H.-W., Burghagen H. & Ewert J.-P. (1978) Key stimuli of prey for toads (Bufo bufo L.): Configuration and movement patterns. Journal of Comparative Physiology 128:189–92. [aJ-PE]
Borchers H.-W. & Ewert J.-P. (1979) Correlation between behavioral and neuronal activities of toads Bufo bufo (L.) in response to moving configurational prey stimuli. Behavioural Processes 4:99106. [aJ-PE]
Borchers H.-W. & Pinkwart C. (1983) A telemetry system for single unit recording in the freely moving toad (Bufo bufo L). In: Advances in vertebrate neuroethology, ed. Ewert J.-P., Capranica R. R. & Ingle D. J.. Plenum. [aJ-PE]
Borchers H.-W., Schürg-Pfeiffer E., Megela A. L. & Ewert J.-P. (1983) Single neuron activity in the optic tectum of intact and thalamic-pretectal (TP)-lesioned behaving toads. Neuroscience Letters Supplement 14:36. [aJ-PE]
Brändle K. & Székely G. (1973) The control of alternating coordination of limb pairs in the newt (Triturus vulgaris). Brain, Behavior and Evolution 8:366–85. [CS]
Brodfueher P. D. & Friesen W. O. (1986) From stimulation to undulation: A neuronal pathway for the control of swimming in the leech. Science 234: 1002–4. [JMC]
Broom D. M. (1981) Biology of behaviour; Mechanisms, functions and applications. Cambridge University Press. [rJ-PE, DMB]
Brower L. P., Brower J. V. Z. & Westcott P. W. (1960) Experimental studies of mimicry. 5: The reaction of toads (Bufo terrestris) to bumblebees (Bombus americanorum) and their robberfly mimics (Mallophora bomboides), with a discussion of aggressive mimicry. American Naturalist 94:343–56. [aJ-PE]
Brown W. T. & Ingle D. (1973) Receptive field changes produced in frog thalamic units by lesions of the optic tectum. Brain Research 59:405–9. [aJ-PE]
Brzoska J. & Schneider H. (1978) Modification of prey-catching behavior by learning in the common toad (Bufo b. bufo L., Anura, Amphibia): Changes in response to visual objects and effects of auditory stimuli. Behavioural Processes 3:125–36. [aJ-PE]
Bullock T. H. (1961) The problem of recognition in an analyzer made of neurons. In: Sensory communication, ed. Rosenblith W. A.. MIT Press. [aJ-PE]
Bullock T. H. (1977) Introduction to nervous systems. Freeman W. H.. [rJ-PE]
Bullock T. H. (1983) Implications for neuroethology from comparative neurophysiology. In: Advances in vertebrate neuroethology, ed. Ewert J.-P., Capranica R. R. & Ingle D. J.. Plenum [aJ-PE]
Bullock T. H. & Perkel D. H. (1968) Neural coding. Neuroscience Research Program Bulletin (vol. 6/3). MIT Press. [rJ-PE]
Burghagen H. (1979) Der Einfluss von figuralen, visuellen Mustern auf das Beutefangverhalten cerschiedener Anuren. Ph.D. Dissertation, University of Kassel. [arJPE, DMB]
Burghagen H. & Ewert J.-P. (1982) Question of “head preference” in response to worm-like dummies during prey-capture of toads Bufo bufo. Behavioral Processes 7:295306. [rJ-PE, DI]
Burghagen H. & Ewert J.-P. (1983) Influence of the background for discriminating object motion from self-induced motion in toads Bufo bufo (L.). Journal of Comparative Physiology 152:241–49. [arJ-PE]
Caine H. S. & Gruberg E. R. (1985) Ablation of nucleus isthmi leads to loss of specific visually elicited behaviors ir the frog Rana pipiens. Neuroscience Letters 54:307–12. [rJ-PE, EG]
Camhi J. M. (1984) Neuroethology: Nerve cells and the natural behavior of animals. Sinauer. [JMC]
Capranica R. R. (1983) Sensory processing of key stimuli. In: Advances in vertebrate neuroethology, ed. Ewert J.-P., Capranica R. R. & Ingle D. J.. Plenum. [aJ-PE]
Capranica R. R. & Moffat A. J. M. (1983) Neurobiological correlates of sound communication in anurans. In: Advances in vertebrate neuroethology, ed. Ewert J.-P., Capranica R. R. & Ingle D. J.. Plenum. [aJ-PE]
Carew T. J., Walters E. T. & Kandel E. R. (1981) Associative learning in Aplysia: Cellular correlates supporting a conditioned fear hypothesis. Science 211:501–4. [RD]
Changeux J.-P. & Konishi M., eds. (1986) Neural and molecular mechanisms of learning. Springer-Verlag. [rJ-PE]
Chevalier G., Vacher S. & Deniau J. M. (1984) Inhibitory nigral influence on tectospinal neurons, a possible implication of basal ganglia in orienting behavior. Experimental Brain Research 53:320–26. [aJ-PE]
Chung S.-H., Raymond S. A. & Lettvin J. Y. (1970) Multiple meaning in single visual units. Brain, Behavior and Evolution 3:72101. [rJ-PE, EC]
Clairambault P. (1976) Development of the prosencephalon. In: Frog neurobiology, ed. Llinás R. & Precht W.. Springer-Verlag. [aJ-PE]
Creutzfeldt O. (1983) Cortex cerebri. Springer-Verlag. [rJ-PE]
Collett T. S. (1977) Stereopsis in toads. Nature 267:349–51. [arJ-PE, GR]
Collett T. S. (1983) Picking a route: Do toads follow rules or make plans? In: Advances in vertebrate neuroethology, ed. Ewert J.-P., Capranica R. R. & Ingle D. J.. Plenum. [aJ-PE, MAA]
Collett T. S. & Udin S. B. (1983) The role of the toad's nucleus isthmi in prey-catching behavior. In: Proceedings of the 2nd workshop on visuomotor coordination in frog and toad: Models and experiments, ed. Lara R. & Arbib M. A.. COINS-Technical Report 83–19, University of Massachusetts. [aJ-PE]
Comer C. & Grobstein P. (1981) Involvement of midbrain structures in tactually and visually elicited prey acquisition behavior in the frog, Rana pipiens. Journal of Comparative Physiology 142:151–60. [PG]
Comer C., Schotland J. & Grobstein P. (1985) Short and longterm effects of unilateral vestibular lesions on posture and orienting movements in the frog. Society for Neuroscience Abstracts 11:289. [aJ-PE]
Cott H. B. (1936) The effectiveness of protective adaptations in the hive-bee, illustrated by experiments on the feeding reactions, habit formation and memory of the common toad (Bufo bufo bufo). Proceedings of the Zoological Society (London) 1:113–33. [aJ-PE]
Czihak G., Langer H. & Ziegler H. (1981) Biologie. Springer-Verlag. [aJ-PE]
Davis W. J. & Gillette R. (1978) Neural correlate of behavioral plasticity in command neurons of Pleurobranchaea. Science 199:801–3. [aJ-PE]
Davis W. J. & Kovac M. P. (1981) The command neuron and the organization of movement. Trends in Neurosciences 4:7376. [aJ-PE]
Dennett D. (1978) Current issues in the philosophy of mind. American Philosophical Quarterly 15: 249–61. [DD]
Dennett D. (1987) The intentional stance. MIT Press/Bradford Books. [DD]
Desan P. H., Grewell K. M. & Gruberg E. R. (1986) Distribution of cholinergic and catecholaminergic neurons in turtle and frog brainstem. Society for Neuroscience Abstracts 12:109. [rJ-PE]
DiDomenico R. & Eaton R. C. (in press) Seven principles for command and the neural causation of behavior. Brain, Behavior and Evolution. [rJ-PE, RD]
Diebschlag E. (1935) Zur Kenntnis der GroBhirnfunktionen einiger Urodelen und Anuren. Zeitschrift für vergleichende Physiologie 21:343–94. [aJ-PE]
Dierickx K. (1969) Hypothalamo-hypophysial regulation of food intake in Rana temporaria. General Comparative Endocrinology 13:361–66. [arJ-PE]
Dieringer N. (1986) Image fading – a problem for frogs? Naturwissenschaften 73:330. [aJ-PE]
Dieringer N. & Precht W. (1982) Compensatory head and eye movements in the frog and their contribution to stabilization of gaze. Experimental Brain Research 47:394406. [AR]
Dieringer N., Precht W. & Blight A. R. (1982) Resetting fast phases of head and eye and their linkage in the frog. Experimental Brain Research 47: 407–16. [AR]
Disterhoft J. F. & Stuart D. K. (1977) Differentiated short latency response increases after conditioning in inferior colliculus neurons of alert rat. Brain Research 130:315–33. [GE]
Doty R. W. (1976) The concept of neural centers. In: Simpler networks and behavior, ed. Fentress J. C.. Sinauer. [aJ-PE, RWD]
Dretske F. (1981) Knowledge and the flow of information. MIT Press/Bradford Books. [DD]
Eaton R. C. (1983) Is the Mauthner cell a vertebrate command neuron? A neuroethological perspective on an evolving concept. In: Advances in vertebrate neuroethology, ed. Ewert J.-P., Capranica R. R. & Ingle D. J.. Plenum. [arJ-PE, CMC]
Eaton R. C. & DiDomenico R. (1985) Command and the neural causation of behavior: A theoretical analysis of the necessity and sufficiency paradigm. Brain, Behavior and Evolution 27:132–64. [rJ-PE, RD]
Eaton R. C. & Hacket J. T. (1984) The role of the Mauthner cell in fast starts involving escape in teleost fish. In: Neural mechanisms of startle behavior, ed. Eaton R. C.. Plenum. [JMC]
Eaton R. C., Nissanov J. & Wieland C. M. (1984) Differential activation of Mauthner and non-Mauthner startle circuits in the zebrafish: Implications for functional substitution. Journal of Comparative Physiology A 155:813–20. [RD]
Eaton R. C., Wieland C. M. or DiDomenico R. (1986) Is the Mauthner cell a Kupfermann & Weiss command neuron? Behavioral and Brain Sciences 9:725–27. [RD]
Ebbesson S. O. E. (1970) Selective silver impregnation of degenerating axoplasm in poikilothermic vertebrates. In: Contemporary research methods in neuroanatomy, ed. Nauta J. H. W. & Ebbesson S. O. E.. Springer-Verlag. [SOEE]
Ebbesson S. O. E. (1976) Morphology of the spinal cord. In: Frog neurobiology, ed. Llinas R. & Precht W.. Springer-Verlag. [aJ-PE]
Ebbesson S. O. E. (1980) The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity. Cell and Tissue Research 213:179212. [SOEE]
Ebbesson S. O. E. (1981) Interspecific variability in brain organization and its possible relation to evolutionary mechanisms. In: Brain mechanisms of behavior in lower vertebrates, ed. Laming P.. Cambridge University Press. [SOEE]
Ebbesson S. O. E. (1984) Evolution and ontogeny of neural circuits. Behavioral and Brain Sciences 7:321–66. [rJ-PE, SOEE]
Ebbesson S. O. E. (in press) The parcellation theory and alterations in brain circuitry after injury. In: Theoretical and controversial issues in recovery after brain damage, ed. Finger S., Levere T., Almli C. R. & Stein D. G.. Plenum. [SOEE]
Eibl-Eibesfeldt I. (1951) Nahrungserwerb und Beuteschema der Erdkröte (Bufo bufo L). Behaviour 4:135. [aJ-PE]
Eibl-Eibesfeldt I. (1979) Ethology, the biology of behavior. Holt, Rinehart and Winston [aJ-PE]
Eikmanns K.-H. (1955) Verhaltensphysiologische Untersuchungen über den Beutefang und das Bewegungssehen der Erdkröte (Bufo bufo L.). Zeitschrift für Tierpsychologie 12:229–53. [aJ-PE]
Emerson S. E. (1985) Skull shape in frogs – correlations with diet. Herpetologica 41:177–88. [GR]
Ewert J.-P. (1967a) Untersuchungen über die Anteile zentralnervöser Aktionen an der taxisspezifischen Ermüdung beim Beutefang der Erdkröte (Bufo bufo L.). Zeitschrift für vergleichende Physiologie 57:263–98. [arJ-PE]
Ewert J.-P. (1967b) Aktivierung der Verhaltensfolge beim Beutefang der Erdkröte (Bufo bufo L.) durch elektrische Mittelhirnreizung. Zeitschrift für vergleichende Physiologie 54:455–81. [aJ-PE]
Ewert J.-P. (1967c) Elektrische Reizung des retinalen Projektionsfeldes im Mittelhirn der Erdkröte (Bufo bufo L.). Pflügers Archiv 295:9098. [aJ-PE]
Ewert J.-P. (1968) Der Einflufβ von Zwischenhirndefekten auf die Visuomotorik im Beute- und Fluchtverhalten der Erdkrote (Bufo bufo L.). Zeitschrift für vergleichende Physiologie 61:4170. [arJ-PE, DI]
Ewert J.-P. (1969a) Quantitative Analyse von Reiz-Reaktions-Beziehungen bei visuellem Auslösen der Beutefang-Wendereaktion der Erdkröte (Bufo bufo L.). Pflügers Archiv 308:225–43. [arJ-PE]
Ewert J.-P. (1969b) Das Beutefangverhalten zwischenhirndefekter Erdkröten (Bufo bufo L.) gegenüber bewegten und ruhenden visuellen Mustern. Pflügers Archiv 306:210–18. [aJ-PE]
Ewert J.-P. (1971) Single unit response of the toad (Bufo americanus) caudal thalamus to visual objects. Zeitschrift für vergleichende Physiologie 74:81102. [aJ-PE, DI]
Ewert J.-P. (1974) The neural basis of visually guided behavior. Scientific American 230:3442. [arJ-PE]
Ewert J.-P. (1980) Neuroethology. An introduction to the neurophysiological fundamentals of behavior. Springer-Verlag. [arJ-PE, DMB]
Ewert J.-P. (1981) Neural coding of “worms” and “antiworms” in the brain of toads: The question of hardwired and softwired systems. In: Brain mechanisms of behaviour in lower vertebrates, ed. Laming P. R.. Cambridge University Press. [aJ-PE]
Ewert J.-P. (1984a) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Comparative neurology of the optic tectum, ed. Vanegas H.. Plenum. [arJ-PE, AR]
Ewert J.-P. (1984b) Behavioral selectivity based on thalamotectal interactions: Ontogenetic and phylogenetic aspects in amphibians. Behavioral and Brain Sciences 7:337–38. [aJ-PE, SOEE]
Ewert J.-P. (1985) The Niko Tinbergen Lecture 1983: Concepts in vertebrate neuroethology. Animal Behaviour 33:129. [aJ-PE]
Ewert J.-P. (1987) Neuroethology: Toward a functional analysis of stimulus-response mediating and modulating neural circuitries. In: Cognitive processes and spatial orientation in animal and man. Part 1, ed. Ellen P. & Thinus-Blanc C.. Martinus Nijhoff. [arJ-PE]
Ewert J.-P., Arend B., Becker V. & Borchers H.-W. (1979) Invariants in configurational prey selection by Bufo bufo (L.). Brain, Behavior and Evolution 16:3851. [aJ-PE]
Ewert J.-P. & Borchers H.-W. (1971) Reaktionscharakteristik von Neuronen aus dem Tectum opticum und Subtectum der Erdkröte Bufo bufo (L.). Zeitschrift für vergleichende Physiologie 71:165–89. [aJ-PE]
Ewert J.-P., Borchers H.-W. & von Wietersheim A. (1978) Question of prey feature detectors in the toad's Bufo bufo (L.) visual system; A correlation analysis. Journal of Comparative Physiology 126:4347. [aJ-PE]
Ewert J.-P., Borchers H.-W. & von Wietersheim A. (1979) Directional sensitivity, invariance, and variability of tectal T5 neurons in response to moving configurational stimuli in the toad Bufo bufo (L.). Journal of Comparative Physiology 132:191201. [aJ-PE]
Ewert J.-P. & Burghagen H. (1979a) Ontogenetic aspects on visual “sizeconstancy” phenomena in the midwife toad Alytes obstetricans (Laur.). Brain, Behavior and Evolution 16:99112. [aJ-PE]
Ewert J.-P. & Burghagen H. (1979b) Configurational prey selection by Bufo, Alytes, Bombina, and Hyla. Brain, Behavior and Evolution 16:157–75. [aJ-PE]
Ewert J.-P., Burghagen H., Albrecht L. & Kepper J. (1982) Effects of background structure on the discrimination of configurational moving prey dummies by toads Bufo bufo (L.). Journal of Comparative Physiology 147:179–87. [aJ-PE]
Ewert J.-P., Burghagen H. & Schürg-Pfeiffer E. (1983) Neuroethological analysis of the innate releasing mechanism for prey-catching behavior in toads. In: Advances in vertebrate neuroethology, ed. Ewert J.-P., Capranica R. R. & Ingle D. J.. Plenum. [arJ-PE]
Ewert J.-P., Buxbaum-Conradi H.Framing E. M., Schürg-Pfeiffer E. & Weerasuriya A. (submitted) Single neuron activity in the toad's medulla oblongata in response to visual and tactile stimuli. [arJ-PE]
Ewert J.-P., Capranica R. R. & Ingle D. J. eds. (1983) Advances in vertebrate neuroethology. Plenum. [SOEE]
Ewert J.-P. & Finkenstädt T. (1987) Modulation of tectal functions by prosencephalic loops in amphibians. Behavioral and Brain Sciences 10:122–23. [arJ-PE]
Ewert J.-P. & Gebauer L. (1973) Gröβenkonstanzphänomene im Beutefangverhalten der Erdkröte (Bufo bufo L.). Journal of Comparative Physiology 85:303–15. [aJ-PE]
Ewert J.-P. & Härter H.-A. (1968) Inhibitionsphänomene im visuellen System der Erdkröte. Naturwissenschaften 55:237. [aJ-PE]
Ewert J.-P. & Härter H.-A. (1969) Der hemmende Einfluβ gleichzeitig bewegter Beuteattrappen auf das Beutefangverhalten der Erdkröte. Zeitschrift für vergleichende Physiologie 64:135–53. [aJ-PE]
Ewert J.-P. & Hock F. J. (1972) Movement sensitive neurones in the toad's retina. Experimental Brain Research 16:4159. [aJ-PE]
Ewert J.-P., Hock F. J. & von Wietersheim A. (1974) Thalamus/Praetectum/Tectum: Retinale Topographie und physiologische Interaktionen bei der Kröte (Bufo bufo L.). Journal of Comparative Physiology 92:343–56. [aJ-PE]
Ewert J.-P. & Inst. Wiss. Film (1982) Gestalt perception in the common toad, I: Innate prey recognition. Film No. C 1430, Institut für den Wissenschaftlichen Film, Göttingen. [rJ-PE]
Ewert J.-P. & Kehl W. (1978) Configurational prey-selection by individual experience in the toad Bufo bufo. Journal of Comparative Physiology 126:105–14. [aJ-PE]
Ewert J.-P., Matsumoto N. & Schwippert W. W. (1985) Morphological identification of prey-selective neurons in the grass frog's optic tectum. Naturwissenschaften 72:661–62. [aJ-PE, MAA, SOEE]
Ewert J.-P. & Rehn B. (1969) Quantitative Analyse der Reiz-Reaktionsbeziehungen bei visuellem Auslösen des Fluchtverhaltens der Wechselkröte (Bufo viridis Laur.). Behaviour 35:212–34. [aJ-PE]
Ewert J.-P., Schürg-Pfeiffer E. & Weerasuriya A. (1984) Neurophysiological data regarding motor pattern generation in the medulla oblongata of toads. Naturwissenschaften 71:590–91. [aJ-PE, CMC]
Ewert J.-P., Speckhardt I. & Amelang W. (1970) Visuelle Inhibition und Exzitation im Beutefangverhalten der Erdkröte (Bufo bufo L.). Zeitschrift für vergleichende Physiologie 68:84110. [aJ-PE]
Ewert J.-P. & Traud R. (1979) Releasing stimuli for antipredator behaviour in the common toad Bufo bufo (L.). Behaviour 68:170–80. [aJ-PE]
Ewert J.-P. & von Seelen W. (1974) Neurobiologie und System-Theorie eines visuellen Muster-Erkennungsmechanismus bei Kröten. Kybernetik 14:167–83. [arJ-PE]
Ewert J.-P. & von Wietersheim A. (1974a) Musterauswertung durch tectale und thalamus/praetectal Nervennetze im visuellen System der Kröte (Bufo bufo L.). Journal of Comparative Physiology 92:131–48. [arJ-PE]
Ewert J.-P. & von Wietersheim A. (1974b) Der Einfluβ von Thalamus/Praetectum-Defekten auf die Antwort von Tectum-Neuronen gegenüber bewegten visuellen Mustern bei der Kröte (Bufo bufo L.). Journal of Comparative Physiology 92:149–60. [aJ-PE, DI]
Feigenbaum J., Cahusac P., Rolls E. T., Miyashita Y. & Niki H. (1986) Neuronal activity in the parahippocampal gyrus of the behaving primate. International Congress of Neuroethology Abstracts 1:83. [rJ-PE]
Fentress J. C. (1983) The analysis of behavioral networks. In: Advances in vertebrate neuroethology, ed. Ewert J.-P., Capranica R. R., & Ingle D. J.. Plenum. [rJ-PE]
Fentress J. C. (1986) Development of coordinated movement: Dynamic, relational and multileveled perspectives. In: Motor development in children: Aspects of coordination and control, ed. Whiting H. T. A. & Wade M. C.. Martinus Nijhoff. [rJ-PE, JCF]
Fentress J. C. (in press) Expressive contexts, fine structure, and central mediation of rodent grooming. Annals of the New York Academy of Sciences. [JCF]
Fentress J. C. & McLeod P. (1986) Motor patterns in development. In: Handbook of neurvbiology: Developmental processes in psychobiology and neurobiology, ed. Blass E. M.. Plenum. [JCF]
Finkenstädt T. (1981) Der Einfluβ des Tectum opticum und Vorderhirns auf die Steuerung des Beutefang- und Fluchtverhaltens beim Salamander Salamandra salamandra (L): Eine quantitative Untersuchung mit Hilfe von Ableitungs-, Läsions- und Hirnreizungstechniken. Ph.D. Dissertation, University of Kassel. [aJ-PE]
Finkenstädt T. (1987) Verschaltung, Interaktion und Funktion visuell beeinfluβbarer Hirngebiete bei Amphihien. Habitation Thesis, University of Kassel. [rJ-PE]
Finkenstädt T., Adler N. T., Allen T. O., Ebbesson S. O. E. & Ewert J.-P. (1985) Mapping of brain activity in mesencephalic and diencephalic structures of toads during presentation of visual key stimuli: A computer assisted analysis of 14C-2DC autoradiographs. Journal of Comparative Physiology 156:433–45. [aJ-PE]
Finkenstädt T., Adler N. T., Allen T. O. & Ewert J.-P. (1986) Regional distribution of glucose utilization in the telencephalon of toads in response to configurational visual stimuli: A 14C-2DC study. Journal of Comparative Physiology 158:457–67. [aJ-PE]
Finkenstädt T. & Ewert J.-P. (1983a) Processing of area dimensions of visual key stimuli by tectal neurons in Salamandra salamandra. Journal of Comparative Physiology 153:8598. [aJ-PE, SOEE]
Finkenstädt T. & Ewert J.-P. (1983b) Visual pattern discrimination through interactions of neural networks: A combined electrical brain stimulation, brain lesion, and extracellular recording study in Salamandra salamandra. Journal of Comparative Physiology 153:99110. [aJ-PE]
Finkenstädt T. & Ewert J.-P. (1985) Glucose utilization in the toad's brain during anesthesia and stimulation of the ascending reticular arousal system: A 14C-2-deoxyglueose study. Naturwissenschaften 72:161–62. [arJ-PE]
Finkenstädt T. & Ewert J.-P. (submitted) Cerebral metabolic effects related to stimulus-specific long-term habituation of visually guided orienting behavior toward prey in toads: A 14C-2DG study [arJ-PE]
Finkenstädt T. & Ewert J.-P. (1987) Visual associative conditioning in the toad: A 2-deoxyglucose study. In: New frontiers in brain research, ed. Eisner N. & Creutzfeldt O.. Thieme G.. [rJ-PE]
Fite K. V., Hayden D., Montgomery N. & Bengston L. (1983) Visual orienting responses following selective reduction of optic input to AOS and/or optic tectum in frog. Society for Neuroscience Abstracts 9:818. [aJ-PE]
Fite K. V. & Scalia F. (1976) Central visual pathways in the frog. In: The amphibian visual system: A multidisciplinary approach, ed. Fite K. V.. Academic Press. [aJ-PE]
Fodor J. (1975) The language of thought. Crowell. [DD]
Fodor J. (1980) Methodological solipsism considered as a research strategy in cognitive psychology. Behavioral and Brain Sciences 3:63109. [DD]
Foreman N. & Stevens R. (1987) Relationships between the superior colliculus and hippocampus: Neural and behavioral considerations. Behavioral and Brain Sciences 10:101–51. [aJ-PE]
Freeman J. A. & Norden J. J. (1984) Neurotransmitters in the optic tectum of non mammalians. In: Comparative neurology of the optic tectum, ed. Vanegas H.. Plenum. [aJ-PE]
Freisling J. (1948) Studien zur Biologie und Psychologie der Wechselkröte (Bufo viridis (Laur.). Osterreichische Zoologische Zeitschrift (Wien) 1:383440. [aJ-PE]
Frost B. J. (1982) Mechanisms for discriminating object motion from selfinduced motion in the pigeon. In: Analysis of visual behavior, ed. Ingle D. J., Goodale M. A. & Mansfield R. J. W.. MIT Press. [aJ-PE]
Fuchs A. F., Kaneko C. R. S. & Scudder C. A. (1985) Brainstem control of saccadic eye movements. Annual Review of Neuroscience 8:307–37. [RWD]
Fukushima K. (1986) A neural network model for selective attention in visual pattern recognition. Biological Cybernetics 55:515. [GE]
Gaillard F. & Galand G. (1979) Diencephalic binocular wide field neurons in the frog. Experimental Brain Research 34:511–20. [aJ-PE]
gallistel C. R. (1980) The organization of action: A new synthesis. Erlbaum. [GE]
Gans C. (1961) A bullfrog and its prey. Natural History 70:2637. [aJ-PE]
Garner W. R. (1966) To perceive is to know. American Psychologist 21:1119. [aJ-PE]
Gaze R. M. (1958) The representation of the retina on the optic lobe of the frog. Quarterly Journal of Experimental Physiology 43:209–14. [aJ-PE]
Gerhardt H. C. (1981) Mating call recognition in the green tree frog (Hyla cinerea): Importance of two frequency bands as a function of sound pressure level. Journal of Comparative Physiology 144:916. [aJ-PE]
Getting P. A. & Dekin M. S. (1985) Tritonia swimming: A model system for integration within rhythmic motor systems. In: Model neural networks and behavior, ed. Selverston A. I.. Plenum. [JMC]
Gibson J. J. (1950) The perception of the visual world. Houghton. [aJ-PE]
Gibson J. J. (1951) What is form? Psychological Review 58:403–12. [aJ-PE]
Gillette R., Kovac M. P. & Davis W. J. (1978) Command neurons in Pleurobranchaea receive synaptic feedback from the motor network they excite. Science 199:798801. [aJ-PE]
Gilson E., ed. (1962) René Descartes discours de la méthode: Texte et commentaire. Vrin. [RWD]
Gnyubkin V. F. & Kondrashev S. L. (1978) Breeding pair formation in the common toad Bufo bufo L. In: Mechanisms of vision of animals, ed. Orlov O. Yu.. Moscow: Nauka. [SLK]
Gnyubkin V. F., Kondrashev S. L. & Orlov O. Yu. (1975) On constant color perception of common toad. Biofizika 20:725–30. [SLK]
Golani I. & Fentress J. C. (1985) Early ontogeny of face grooming in mice. Developmental Psychobiology 18:529–44. [JCF]
Gonzalez-Lima F. & Scheich H. (1984) Functional activation in the auditory system of the rat produced by arousing reticular stimulation: A 2-Deoxyglucose study. Brain Research 299:201–14. [rJ-PE, GE]
Goodale M. A. (1983a) Vision as a sensorimotor system. In: Behavioral approaches to brain research, ed. Robinson T. E.. Oxford University Press. [rJ-PE, MAG]
Goodale M. A. (1983b) Neural mechanisms of visual orientation in rodents: Targets versus places. In: Spatially oriented behavior, ed. Hein A. & Jeannerod M.. Springer-Verlag. [MAG]
Goodale M. A. & Milner A. D. (1982) Fractionating orientation behavior in rodents. In: Analysis of visual behavior, ed. Ingle D. J., Goodale M. A. & Mansfield R. J. W.. MIT Press. [MAG]
Gordon J. & Hood D. C. (1976) Anatomy and physiology of the frog retina. In: The amphibian visual system: A multidisciplinary approach, ed. Fite K. V.. Plenum. [aJ-PE]
Gould J. L. & Marler P. (1987) Learning by instinct. Scientific American 256(1):6273. [JMC]
Graybiel A. M. (1978) Satellite system of the superior colliculus: The parabigeminal nucleus and its projections to the superficial collicular layers. Brain Research 145:365–75. [rJ-PE]
Grobstein P. (1983) Review of Analysis of visual behavior. Animal Behaviour 31:621–22. [PG]
Grobstein P. (1986) Review of The brain machine. Journal of the American Medical Association 255:2677–78. [PG]
Grobstein P. (in press a) On beyond neuronal specificity: Progress and prospects in understanding the genesis of specific response relations in the nervous system and behavior. In: Advances in neural and behavioral development, vol. 3, ed. Shinkman P. & Aslin R. N.. Ablex Press. [PG]
Grobstein P. (in press b) Between the retinotectal projection and directed movement: Topography of a sensorimotor interface. Brain, Behavior and Evolution. [rJ-PE, PG]
Grobstein P. & Comer C. (1983) The nucleus isthmi as an intertectal relay for the ipsilateral oculotectal projection in the frog, Rana pipiens. Journal of Comparative Neurology 217:5474. [rJ-PE]
Grobstein P., Comer C. & Kostyk S. K. (1983) Frog prey capture behavior: Between sensory maps and directed motor output. In: Advances in vertebrate neuroethology, ed. Ewert J.-P., Capranica R. R. & Ingle D. J.. Plenum. [arJ-PE, CMC, PG]
Grobstein P. & Masino T. (1986) Sensorimotor circuitry underlying directed movement in the frog: Evidence for an intermediate representation of space in the tectofugal pathways. Society for Neuroscience Abstracts 12:684. [rJ-PE, PG]
Gruberg E. R. & Lettvin J. Y. (1980) Anatomy and physiology of a binocular system in the frog Rana pipiens. Brain Research 192:313–25. [aJ-PE, EG]
Gruberg E. R. & Udin S. B. (1978) Topographic projections between the nucleus isthmi and the tectum of the frog Rana pipens. Journal of Comparative Neurology 179:487500. [aJ-PE]
Grüsser O.-J. & Grüsser-Cornehls U. (1968) Neurophysiologische Grundlagen visueller angeborener Auslösemechanismen beim Frosch. Zeitschrift für vergleichende Physiologie 59:124. [aJ-PE]
Grüsser O.-J. & Grüsser-Cornehls U. (1970) Die Neurophysiologie visuell gesteuerter Verhaltensweisen bei Anuren. Verhandlungen der Deutschen Zoologischen Gesellschaft in Köln 64:201–18. [aJ-PE]
Grüsser O.-J. & Grüsser-Cornehls U. (1976) Neurophysiology of the anuran visual system. In: Frog neurobiology, ed. Llinás R. & Precht W.. Springer-Verlag. [aJ-PE, GS]
Grüsser-Cornehls U. (1984) The neurophysiology of the amphibian optic tectum. In: Comparative neurology of the optic tectum, ed. Vanegas H.. Plenum. [aJ-PE]
Guha K., Jørgensen C. B. & Larsen L. O. (1980) Relationship between nutritional state and testes function, together with observations on patterns of feeding in the toad, Bufo bufo bufo. Journal of Zoology (London) 192:147–55. [aJ-PE]
Guitton D., Crommelinck M. & Roucoux A. (1980) Stimulation of the superior colliculus in the alert cat. 1. Eye movements and neck EMG activity evoked when the head is restrained. Experimental Brain Research 39:6373. [AR]
Hackett J. T. & Greenfield J. L. (1986) The behavioral role of the Mauthner neuron impulse. Behavioral and Brain Sciences 9:729–30. [RD]
Haldane E. S. & Ross G. R. T. (1967) The philosophical works of Descartes, vol. 2. Cambridge University Press. [RWD]
Hanke W. (1976) Neuroendocrinology. In: Frog neurobiology, ed. Llinás R. & Precht W.. Springer-Verlag. [aJ-PE]
Harnad S. (1987a) Psychophysical and cognitive aspects of categorical perception: A critical overview. In: Categorical perception: The groundwork of cognition, ed. Harnad S.. Cambridge University Press. [aJ-PE, JCF]
Harnad S. (1987b) Category induction and representation. In: Categorical perception: The groundwork of cognition, ed. Harnad S.. Cambridge University Press. [aJ-PE]
Hartline H. K. (1940) The receptive fields of optic nerve fibers. American Journal of Physiology 130:690–99. [aJ-PE]
Hebb D. O. (1949) The organization of behavior. Wiley. [aJ-PE]
Hebb D. O. (1959) A neuropsychological theory. In: Psychology: A study of a science, vol. 1, ed. Koch S.. McGraw-Hill. [aJ-PE]
Heiligenberg W. (1983) The jamming avoidance response in an electric fish: Algorithms in sensory information processing and their neuronal realization. In: Advances in vertebrate neuroethology, ed. Ewert J.-P., Capranica R. R. & Ingle D. J.. Plenum. [aJ-PE]
Herrick C. J. (1933) The amphibian forebrain. 8: Cerebral hemispheres and pallial primordia. Journal of Comparative Neurology 58:737–59. [arJ-PE]
Heusser H. (1959) Die Lebensweise der Erdkröte, Bufo bufo (L.): Nahrungsaufnahme und Pigmentierung der Daumenschwielen im Jahresverlauf. Biologisches Zentralblatt 88:457–67. [aJ-PE]
Himstedt W. (1982) Prey selection in salamanders. In: Analysis of visual behavior, ed. Ingle D. J., Goodale M. A. & Mansfield R. J. W.. MIT Press. [aJ-PE]
Himstedt W., Freidank U. & Singer E. (1976) Die Veränderung eines Auslösemechanismus im Beutefangverhalten während der Entwicklung von Salamandra salamandra (L.). Zeitschrift für Tierpsychologie 41:235–43. [aJ-PE]
Hinde R. A. (1954) Changes in responsiveness to a constant stimulus. Behaviour 2:4154. [aJ-PE]
Hinsche G. (1935) Ein Schnappreflex nach “Nichts” bei Anuren. Zoologischer Anzeiger 111:113–22. [aJ-PE]
Hood D. C. & Gordon J. (1981) The frog ganglion cell: Not a feature detector and not a monkey cortical cell. Perception 10:421–22. [aJ-PE]
Horn G. (1985) Memory, imprinting and the brain: An inquiry into mechanisms. Clarendon Press. [JCF]
Horridge G. A. (1968) Interneurons. Freeman. [GAH]
Horridge G. A. (1983) Neuron function and behaviour: Which explains which? Fortschritte der Zoologie 28:369–83. [rJ-PE, GAH]
House D. (1984) Neural models of depth perception in frog and toad. Ph. D. Dissertation, University of Massachusetts, Amherst. [aJ-PE]
Hoyle G. (1964) Exploration of neuronal mechanisms underlying behavior in insects. In: Neural theory and modeling, ed. Reiss R. F.. Stanford University Press. [JCF]
Hoyle G., ed. (1977) Identified neurons and behavior of arthropods. Plenum. [aJ-PE]
Hoyle G., ed. (1984) The scope of neuroethology. Behavioral and Brain Sciences 7:367412. [arJ-PE, JCF]
Hubel D. H. & Wiesel T. N. (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology 160:106–54. [aJ-PE, KAS]
Hubel D. H. & Wiesel T. N. (1965) Receptive fields and functional architecture in two non-striate visual areas (18 and 19) of the cat. Journal of Neurophysiology 28:229–89. [aJ-PE]
Huber F. (1983) Implications of insect neuroethology for studies on vertebrates. In: Advances in vertebrate neuroethology, ed. Ewert J.-P., Capranica R. R. & Ingle D. J.. Plenum. [arJ-PE]
Huber F. & Thorson J. (1985) Cricket auditory communication. Scientific American 253(6):4654. [JMC]
Ingle D. (1968) Visual releasers of prey-catching behavior in frogs and toads. Brain, Behavior and Evolution 1:500518. [aJ-PE, DI]
Ingle D. (1971) Prey-catching behavior of anurans toward moving and stationary objects. Vision Research Supplement 3:447–56. [aJ-PE]
Ingle D. (1973) Disinhibition of tectal neurons by pretectal lesions in the frog. Science 180:422–24. [aJ-PE, DI]
Ingle D. (1973a) Size preference for prey catching in frogs: Relationship to motivational state. Behavioral Biology 9:485–91. [DI]
Ingle D. (1973b) Two visual systems in the frog. Science 181:1053–55. [JMC]
Ingle D. (1975) Selective visual attention in frogs. Science 188:1033–35. [aJ-PE]
Ingle D. (1976) Spatial vision in anurans. In: The amphibian visual system: A multidisciplinary approach, ed. Fite K. V.. Academic Press. [aJ-PE, DI]
Ingle D. (1977) Detection of stationary objects by frogs (Rana pipiens) after ablation of optic tectum. Journal of Comparative Physiology and Psychology 91:1359–64. [aJ-PE, DI]
Ingle D. (1980) Some effects of pretectum lesions on the frog's detection of stationary objects. Behavioral Brain Research 1:139–63. [aJ-PE, DI]
Ingle D. (1983a) Brain mechanisms of visual localization by frogs and toads. In: Advances in vertebrate neuroethology, ed. Ewert J.-P., Capranica R. R. & Ingle D. J.. Plenum. [arJ-PE, DI]
Ingle D. (1983b) Prey selection in frogs and toads: A neuroethological model. In: Handbook of behavioral neurobiology, vol. 6: Motivation, ed. Satinoff E. & Teitelbaum P.. Plenum. [DI]
Ingle D. & Arango V. (1986) Morphology of tectal efferent neurons: A frog vs. toad comparison. Paper presented to the J. B. Johnstone Club, Society for Neuroscience Annual Meetings, Washington, D.C. [DI]
Ingle D. & McKinley D. (1977) Some effects of stimulus configuration on prey-catching behavior by the toad, Bufo marinus. Animal Behaviour 26:885–91. [DI]
Ingle D. J. & Quinn S. (1982) Retrograde labelling of neurons of known behavioral function in frog tectum. Society for Neuroscience Abstracts 8:406. [rJ-PE]
Ito H., Butler A. B. & Ebbesson S. O. E. (1980) An ultrastructural study of the normal synaptic organization of the optic tectum and the contralateral tectum in a teleost, Holocentrus rufus. Journal of Comparative Neurology 191:639–60. [SOEE]
Jeannerod M. (1985) The brain machine. Harvard University Press. [PG]
John E. R. & Schwartz E. L. (1978) The neurophysiology of information processing and cognition. Annual Review of Psychology 29:129. [aJ-PE]
Jung R. (1953) Allgemeine Neurophysiologie. Die Tätigkeit des Nervensystems. In: Handbuch der inneren Medizin, Vol VII Neurologie I, ed. Bergmann G. von, Frey W., Schwiegk H.. Springer-Verlag. [rJ-PE]
Kandel E. (1979) Small systems of neurons. In: The brain, ed. Scientific American. Freeman W. H.. [JMC]
Kandel E. R., Krasne F. B., Strumwasser F. & Truman J. W., eds. (1979) Neurosciences research program bulletin 17: Cellular mechanisms in the selection and modulation of behavior. MIT Press. [aJ-PE]
Karten H. J., Reiner A. & Brecha N. (1982) Laminar organization and origins of neuropeptides in the avian retina and optic tectum. In: Cytological methods in neuroanatomy. A. R. Liss. [rJ-PE]
Katte O. & Hoffmann K.-P. (1980) Direction specific neurons in the pretectum of the frog (Rana esculenta). Journal of Comparative Physiology 140:5357. [aJ-PE]
Kicliter E. & Ebbesson S. O. E. (1976) Organization of the “non olfactory” telencephalon. In: Frog neurobiology, ed. Llinas R. & Precht W.. Springer-Verlag. [aJ-PE]
Kirschfeldt K. (1973) Das neuronale Superpositionsauge. Fortschritte der Zoologie 21:229–57. [rJ-PE]
Kondrashev S. L. (1976) Influence of the visual stimulus size on the breeding behavior of anuran males. Akademija Nank, Zoologisheskij Zhurnal 55:1576–79. [aJ-PE]
Kondrashev S. L. (1985) Retinal photoreceptors and color discrimination in the toad Bufo bufo L. In: Problems of herpetology. Proceedings of the 6th All-Union Herpetological Conference, ed. Darevskii I. S.. Leningrad: Nauka. [SLK]
Kondrashev S. L. & Dimentman A. M. (1978) Role of dorsal thalamus in the organization of visually-mediated behavior in amphibians. In: Mechanisms of vision of animals, ed. Orlov O. Yu.. Moscow: Nauka. [SLK]
Kondrashev S. L., Gnyubkin V. F., Dimentman A. M. & Orlov O. Yu. (1976) Role of visual stimuli in the breeding behavior of Rana temporaria, Bufo bufo and Bufo viridis. Zoologicheskij Zhurnal 55:1027–37. [SLK]
Konishi M. (1985) Birdsong: From behavior to neuron. Annual Review of Neuroscience 8:125–70. [aJ-PE]
Konorski J. (1967) Integrative activity of the brain. University of Chicago Press. [aJ-PE]
Kostyk S. K. & Grobstein P. (1982) Visual orienting deficits in frogs with various unilateral lesions. Behavioral Brain Research 6:379–88. [aJ-PE]
Kostyk S. K. & Grobstein P. (in press a) Neuronal organization underlying visually elicited prey orienting in the frog. 1. Effects of various unilateral lesions. Neuroscience. [rJ-PE, PG]
Kostyk S. K. and Grobstein P. (in press b) Neuronal organization underlying visually elicited prey orienting in the frog. 2. Anatomical studies on the laterality of central projections. Neuroscience. [rJ-PE, PG]
Kostyk S. K. & Grobstein P. (in press c) Neuronal organization underlying visually elicited prey orienting in the frog. 3. Evidence for the existence of an uncrossed descending tectofugal projection. Neuroscience. [rJ-PE, PG]
Kuljis R. O. & Karten H. J. (1982) Laminar organization of peptide-like immunoreactivity in the anuran optic tectum. Journal of Comparative Neurology 212: 188201. [ar-JPE]
Kupfermann I., Castellucci V., Pinsker H. & Kandel E. R. (1970) Neuronal correlates of habituation and dishabituation of the gill withdrawal reflex in Aplysia. Science 167:1743–45. [RD]
Kupfermann I. & Weiss K. R. (1978) The command neuron concept. Behavioral and Brain Sciences 1:339. [aJ-PE, CMC, RD]
Laming P. R. & Ewert J.-P. (1983) The effects of pretectal lesions on neuronal, sustained potential shift and electroencephalographic responses of the toad tectum to presentation of a visual stimulus. Comparative Biochemistry and Physiology 76:247–52. [aJ-PE]
Lara R. & Arbib M. A. (1985) A model of the neural mechanisms responsible for pattern recognition and stimulus specific habituation in toads. Biological Cybernetics 51:223–37. [aJ-PE]
Lara R., Cervantes F. & Arbib M. A. (1982) Two-dimensional model of retinal-tectal-pretectal interactions for the control of prey-predator recognition and size preference in amphibia. In: Competition and cooperation in neural nets, ed. Amari S. & Arbib M. A.. Springer-Verlag. [aJ-PE]
Lashley K. S. (1951) The problem of serial order in behavior. In: Cerebral mechanisms in behavior, ed. Jeffries L. A.. Wiley. [PG]
Lázár G. (1969) Efferent pathways of the optic tectum in the frog. Acta Biologica Academiae Scientiarum Hungaricae 20:171–83. [aJ-PE]
Lázár G. (1971) The projection of the retinal quadrants on the optic centers in the frog: A terminal degeneration study. Acta Morphologica Academiae Scientiarum Hungaricae 19:325–34. [aJ-PE]
Lázár G. (1973) Role of accessory optic system in the optokinetic nystagmus of the frog. Brain, Behavior and Evolution 5:443–60. [aJ-PE]
Lázár G. (1979) Organization of the frog visual system. In: Recent development of biology in Hungary, vol. 8, ed. Lissak R.. Budapest: Akademiai Kiado. [aJ-PE]
Lázár G. (1984) Structure and connections of the frog optic tectum. In: Comparative neurology of the optic tectum, ed. Vanegas H.. Plenum. [aJ-PE, SOEE]
Lázár G., Tóth P., Csank G. & Kicliter E. (1983) Morphology and location of tectal projection neurons in frogs. A study with HRP and cobalt-filling. Journal of Comparative Neurology 215:108–20. [aJ-PE, DI]
Lettvin J. Y., Maturana H. R., McCulloch W. S. & Pitts W. H. (1959) What the frog's eye tells the frog's brain. Proceedings of the Institute of Radio Engineers 47:1940–51. [aJ-PE, SOEE]
Lettvin J. Y., Maturana H. R., McCulloch W. S. & Pitts W. H. (1961) Two remarks on the visual system of the frog. In: Sensory communication, ed. Rosenblith W. A.. MIT Press. [aJ-PE, DI]
Llinás R. & Yarom Y. (1986) Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: An in vitro study. Journal of Physiology-London 376:163–82. [JMC]
Lorenz K. (1935) Der Kumpan in der Umwelt des Vogels. Der Artgenosse als auslösendes Moment sozialer Verhaltensweisen. Journal für Ornithologie 83:137213, 289–413. [aJPE]
Lorenz K. (1943) Die angeborenen Formen Moglicher Erfahrung. Zeitschrift für Tierpsychologie 5:235409. [arJ-PE]
Manning A. (1979) An introduction to animal behaviour, 3rd edition. Springer-Verlag. [aJ-PE]
Tung Mao Tse (1935) Worte des Vorsitzenden. Verlag für fremdsprachige Literatur (German translation, Peking 1971). [rJ-PE]
Masino T. & Grobstein P. (1985) The organization of tectal projections to the ventral midbrain in Rana pipiens. Society for Neuroscience Abstracts 11:289. [arJ-PE]
Masino T. & Grobstein P. (1986) Sensorimotor circuitry underlying directed movement in the frog: Organization of tectofugal pathways and likely involvement of the nMLF. Society for Neuroscience Abstracts 12:684. [rJ-PE]
Massion J., Paillard J., Schultz W. & Wiesendanger M., eds. (1983) Neural coding of motor performance. Springer-Verlag. [aJ-PE]
Matsumoto N. & Antal M. (1984) Physiological and morphological study of prey and predator detecting neurons in the frog tectum. Proceedings of the 6th Annual Meeting of the Japanese Society for General Comparative Physiology Abstract 6:169. [aJ-PE]
Matsumoto N., Schwippert W. W. & Ewert J.-P. (1986) Intracellular activity of morphologically identified neurons of the grass frog's optic tectum in response to moving configurational visual stimuli. Journal of Comparative Physiology 159:721–39. [arJ-PE, MAA, JMC, SOEE]
Maturana H. R., Lettvin J. Y., McCulloch W. S. & Pitts W. H. (1960) Anatomy and physiology of vision in the frog (Rana pipiens). Journal of General Physiology 43:129–76. [aJ-PE]
Maximov V. V., Orlov O. Yu. & Reuter T. (1985) Chromatic properties of the retinal afferents in the thalamus and the tectum of the frog (Rana temporaria). Vision Research 25:1037–49. [SLK]
McCormick D. A. & Thompson R. F. (1984) Cerebellum: Essential involvement in the classically conditioned eyelid reflex. Science 223:296–99. [RD]
Mcllwain J. T. (1975) Visual receptive fields and their images in superior colliculus of cat. Journal of Neurophysiology 38:219–30. [DI]
Megela A. L., Borchers H.-W. & Ewert J.-P. (1983) Relation between activity of tectal neurons and prey-catching behavior in toads Bufo bufo. Naturwissenschaften 70:100101. [aJ-PE]
Meredith M. A. & Stein B. E. (1986) Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. Journal of Neurophysiology 56:640–62. [GE]
Milson J. A. & Mitchell J. F. (1977) The action of amino acids on evoked responses in the frog optic tectum. British Journal of Pharmacology 59:484P. [aJ-PE]
Mountcastle V. B. (1957) Modality and topographic properties of single neurons of cat's somatic sensory cortex. Journal of Neurophysiology 20:403434. [aJ-PE]
Mufson E. J., Martin T. L., Mash D. C., Wainer B. H. & Mesulam M. M. (1985) Cholinergic projection from the parabigeminal nucleus (Ch8) to the superior colliculus in the mouse. Society for Neuroscience Abstracts 11:1238. [rJ-PE]
Murphey R. K. (1986) The myth of the inflexible invertebrate: Competition and synaptic remodelling in the development of invertebrate nervous systems. Journal of Comparative Physiology A 158:585–91. [JCF]
Nagel T. (1974) What is it like to be a bat? Philosophical Review 83:435–50. [DD]
Neary T. J. & Northcutt R. G. (1983) Nuclear organization of the bullfrog diencephalon. Journal of Comparative Neurology 213:262–78. [aJ-PE]
Nieuwenhuys R. & Opdam P. (1976) Structure of the brain stem. In: Frog neurobiology, ed. Llinas R. & Precht W.. Springer-Verlag. [aJ-PE]
Nissanov J. & Eaton R. C. (in press) Reticulospinal control of rapid escape turning in fishes. American Zoologist. [RD]
Nolen T. G. & Hoy R. R. (1984) Initiation of behavior by single neurons: The role of behavioral context. Science 226:992–94. [RD]
Northcutt R. G. & Kicliter E. (1980) Organization of the amphibian telencephalon. In: Comparative neurology of the telencephalon, ed. Ebbesson S. O. E.. Plenum. [aJ-PE]
Orlov O. Yu. & Kondrashev S. L. (1978) Color-discrimination functions of visual projections in frog. In: Mechanisms of vision of animals, ed. Orlov O. Yu.. Moscow: Nauka. [SLK]
Orlov O. Yu. & Maximov V. V. (1982) Color vision and behavior in amphibians. In: Sensory systems, ed. Cershuni G. V.. Leningrad: Nauka. [SLK]
Parent A. (1973) Distribution of monoamine-containing neurons in the brainstem of the frog. Rana temporaria. Journal for Morphology 139:6778. [arJ-PE]
Patton P. & Grobstein P. (1986) Forebrain modulation of orienting circuitry in the frog: Involvement of the striatum. Society for Neuroscience Abstracts 12:106. [rJ-PE]
Pearl J. & Tarsi M. (1986) Structuring causal trees. Journal of Complexity 2:6077. [GAH]
Pearson K. G. (1985) Are there central pattern generators for walking and flight in insects? In: Feedback and motor control in invertebrates and vertebrates, ed. Barnes W. J. P. & Gladden M.. Croom Helm. [JCF]
Perrett D. I. & Rolls E. T. (1983) Neural mechanisms underlying the visual analysis of faces. In: Advances in vertebrate neuroethology, ed. Ewert J.-P., Capranica R. R. & Ingle D. J.. Plenum. [arJ-PE]
Pilleri G. (1984) Movements related to the preservation of the species and social instincts appearing as neurological symptoms in degenerative dementias. In: Brain pathology, vol. 1, ed. Pilleri G. & Tagliavini F.. Brain Anatomy Institute, Switzerland. [RWD]
Porter K. R. (1972) Herpetology. W. B. Saunders. [aJ-PE]
Ramon y Cajal S. (1894) Die Retina der Wirbeltiere (transl. by Greef R.). J. F. Bergmann. [aJ-PE]
Rehn B. (1977) Cerebrate Repräsentation des Fluchtverhaltens der Erdkröte (Bufo bufo L.). Ph.D. Dissertation, Technical University of Darmstadt. [aJ-PE]
Reiner A., Brauth S. E. & Karten H. J. (1984) Evolution of the amniote basal ganglia. Trends in Neurosciences 7:320–25. [arJ-PE]
Reiner A., Brauth S. E., Kitt C. A. & Karten H. J. (1980) Basal ganglionic pathways to the tectum: Studies in reptiles. Journal of Comparative Neurology 193:565–89. [rJ-PE]
Reiner A., Karten H. J. & Brecha N. C. (1982) Enkephalin-mediated basal ganglia influences over the optic tectum: Immunohistochemistry of the tectum and the lateral spiriform nucleus in pigeon. Journal of Comparative Neurology 208:3753. [arJ-PE]
Ritzmann R. E. & Pollack A. J. (1986) Identification of thoracic interneurons that mediate giant interneuron-to-motor pathways in the cockroach. Journal of Comparative Physiology 159:639–54. [JMC]
Ritzmann R. E., Tobias M. L. & Fourtner C. R. (1980) Flight activity initiated via giant intemeurons of the cockroach: Evidence for bifunctional trigger intemeurons. Science 210:443–45. [JMC]
Roberts A. & Roberts B. L., eds. (1983) Neural origin of rhythmic movements. Cambridge University Press. [aJ-PE]
Roeder K. D. (1959) A physiological approach to the relation between prey and predator. Smithsonian Miscellaneous Collections 137:287306. [CMC]
Rolls E. T. (1987) Neuronal activity underlying perception and learning in the primate. In: New frontiers in brain research, ed. Eisner N. & Creutzfeldt O.. G. Thieme. [rJ-PE]
Rose G. J., Keller C. H. & Heiligenberg W. (1986) Stemopygus offers insight into the functional role of “sign-selective” neurons in the torus semicircularis. Society for Neuroscience Abstracts 12:200. [aJ-PE]
Roth G. (1976) Experimental analysis of the prey catching behavior of Hydromantes italicus Dunn (Amphibia, Plethodontidae). Journal of Comparative Physiology 109:4758. [rJ-PE]
Roth G. (1982) Responses in the optic tectum of the salamander Hydromantes italicus to moving prey stimuli. Experimental Brain Research 45:386–92. [aJ-PE, GR]
Roth G. (1986) Neural mechanisms of prey-recognition: Examples in amphibians. In: Predator-prey relationships, ed. Feder M. E. & Lauder G. V.. University of Chicago Press. [Dl]
Roth G. (in press) Visual behavior in salamanders. Springer. [GR]
Roth G. & Jordan M. (1982) Response characteristics and stratification of tectal neurons in the toad Bufo bufo (L.). Experimental Brain Research 45:393–98. [aJ-PE]
Roucoux A., Guitton D. & Crommelinck M. (1980) Stimulation of the superior colliculus in the alert cat. 2. Eye and head movements evoked when the head is unrestrained. Experimental Brain Research 39:7585. [AR]
Rubinson E. (1968) Projections of the tectum opticum of the frog. Brain, Behavior and Evolution 1:529–61. [aJ-PE]
Rumelhart D. E., McClelland J. L. & the PDP Research Group (1986) Parallel distributed processing. Explorations in the microstructures of cognition. MIT Press. [JCF]
Russel D. F. & Hartline D. K. (1978) Bursting neural networks: A reexamination. Science 200:453–55. [aJ-PE]
Satou M. & Ewert J.-P. (1984) Specification of tecto-motor outflow in toads by antidromic stimulation of tecto-bulbar/spinal pathways. Naturwissenschaften 71:52. [CMC]
Satou M. & Ewert J.-P. (1985) The antidromic activation of tectal neurons by electrical stimuli applied to the caudal medulla oblongata in the toad, Bufo bufo (L. Journal of Comparative Physiology 157:739–48. [aJ-PE]
Satou M., Matsushima T. & Ueda K. (1984) Neuronal pathways from the tectal “snapping-evoking area” to the tongue muscle controlling motoneurons in the Japanese toad: Evidence of the intervention of excitatory intemeurons. Zoological Science 1:829–32. [aJ-PE]
Scalia F. (1976) The optic pathway of the frog: Nuclear organization and connections. In: Frog neurobiology, ed. Llinás R. & Precht W.. Springer-Verlag. [aJ-PE]
Scheich H. (1983) Sensorimotor interfacing. In: Advances in vertebrate neuroethology, ed. Ewert J.-P., Capranica R. R. & Ingle D. J.. Plenum Press. [aJ-PE]
Schildberger K. (1984) Temporal selectivity of identified auditory neurons in the cricket brain. Journal of Comparative Physiology 155:171–85. [JMC]
Schleidt W. M. (1961) Reaktionen von Trüthuhnem auf fliegende Raubvögel und Versuche zur Analyse ihrer AAMs. Zeitschrift für Tierpsychologie 18:534–60. [aJ-PE]
Schleidt W. M. (1962) Die historische Entwicklung der Begriffe “Angeborenes auslösendes Schema” und “Angeborener Auslösemechanismus” in der Ethologie. Zeitschrift für Tierpsychologie 19:697722. [aJ-PE]
Schleidt W. M. (1974) How “fixed” is the fixed action pattern? Zeitschrift für Tierpsychologie 36:184211. [rJ-PE]
Schneider D. (1954) Beitrag zu einer Analyse des Beute- und Fluchtverhaltens einheimischer Anuren. Biologisches Zentralblatt 73:225–82. [aJ-PE]
Schneider G. E. (1969) Two visual systems. Science 163:895902. [aJ-PE, MAG]
Schürg-Pfeiffer E. (1979) Quantitative neurophysiologische Untersuchungen zur Frage nach Cestaltdctektorcn im visuellen System des Frosches Rana temporaria. Ph.D. Dissertation, University of Kassel. [aJ-PE]
Schürg-Pfeiffer E. & Ewert J.-P. (1981) Investigation of neurons involved in the analysis of Gestalt prey features in the frog fiana temporaria. Journal of Comparative Physiology 141:139–52. [arJ-PE, DI]
Schürg-Pfeiffer E. & Ewert J.-P. (submitted) Correlation between responses of prey-selective T5(2) neurons and prey-catching in freely moving toads. [arJ-PE]
Schürg-Pfeiffer E., Finkenstädt T., Cromarty A. & Ewert J.-P. (submitted) Change of response properties of a T5(2) neuron in the course of pretectal lesions in the toad. [aJ-PE]
Schippert W. W. & Ewert J.-P. (1987) Visual neurons in the medulla oblongata of common toads: Intracellular recording and labeling. In: New frontiers in brain research, ed. Eisner N. & Creutzfeldt O.. G. Thieme. [rJ-PE]
Schwippert W. W. & Ewert J.-P. (submitted) Identification of neurons in the toad's medulla oblongata by intracellular recording and labeling. [arJ-PE]
Selverston A. I. (1980) Are central pattern generators understandable? Behavioral and Brain Sciences 3:535–71. [aJ-PE]
Shinn E. A. & Dole J. W. (1978) Evidence for a role for olfactory cues in the feeding response of leopard frogs. Rana pipiens. Herpetologia 34:167–72. [aJ-PE]
Sjölund B. & Björglund A., eds. (1982) Brain stem control of spinal mechanisms. Elsevier. [aJ-PE]
Sklansky J. & Wassel G. N. (1981) Pattern classifiers and trainable machines. Springer-Verlag. [MAA]
Sparks D. L. (1986) Translation of sensory signals into commands for control of saccadic eye movements: Role of primate superior colliculus. Physiological Reviews 66:118–71. [GE]
Sprague J. (1966) Interaction of cortex and superior colliculus in mediation of visually guided behavior in the cat. Science 153:1544–47. [EG]
Stellar E. (1954) The physiology of motivation. Psychological Reviews 61:522. [rJ-PE]
Suga N. (1984) The extent to which biosonar information is represented in the bat auditory cortex. In: Dynamic aspects of neocortical function, ed. Edelman G. M., Gall W. E. & Cowan W. M.. Wiley. [aJ-PE]
Székely G. (1963) Functional specificity of spinal cord segments in the control of limb movements. Journal of Embryology and Experimental Morphology 11:431–44. [GS]
Székely G. (1973) Anatomy and synaptology of the optic tectum. In: Handbook of sensory physiology, vol. 7, ed. Jung R.. Springer-Verlag. [aJ-PE]
Székely G. & Czéh G. (1971) Activity of spinal cord fragments and limbs deplanted in the dorsal fin of Urodele larvae. Acta Physiologica Academiae Sdentiarum Hungaricae 40:303–12. [GS]
Székely G. & Czéh G. (1976) Organization of locomotion. In: Frog neurobiology, ed. Llinas R. & Precht W.. Springer-Verlag. [aJ-PE, GS]
Székely G. & Lázár G. (1976) Cellular and synaptic architecture of the optictectum. In: Frog neurobiology, ed. Llinás R. & Precht W.. Springer-Verlag. [arJ-PE]
Székely G., Lévai G. & Matesz K. (1983) Primary afferent terminals in the nucleus of the solitary tract of the frog: An electron microscopic study. Experimental Brain Research 53:109–17. [rJ-PE]
Szentágothai J. (1967) The anatomy of complex integration units in the nervous system. In: Recent developments of neurobiology in Hungary, vol. 1: Results in neuroanatomy, neurochemistry, neuropharmacology and neurophysiology, ed. Lissak K.. Budapest: Akademiai Kiado. [aJ-PE]
Szentágothai J. & Arbib M. A. (1974) Neurosdences research program bulletin 12: Conceptual models of neural organization. MIT Press, [aJ-PE, MAA]
Thompson R. F. (1980) The search for the engram, II. In: Neural mechanisms in behavior, ed. McFadden D.. Springer. [GE]
Thompson R. F., Patterson M. M. & Berger T. (1978) Associative learning in the mammalian nervous system. In: Brain and learning, ed. Teyler T.. Dordrecht: Reidel. [GE]
Thompson R. F. & Spencer W. A. (1966) Habituation: A model phenomenon for the study of neuronal substrates of behavior. Psychological Reviews 73:1642. [RD]
Tinbergen W. (1948) Social releasers and the experimental method required for their study. Wilson Bulletin 60:652. [aJ-PE]
Tinbergen W. (1951) The study of instinct. Clarendon. [arJ-PE]
Tinbergen N. & Kuenen D. J. (1939) Ü0ber die auslösenden und richtungsgebenden Reizsituationen der Sperrbewegung von jungen Drosseln (Turdus m. merula L.) und T.e.ericetorum Turdon). Zeitschrift für Tierpsychologie 3:3760. [aJ-PE]
Tóth P., Csank G. & Lázár G. (1985) Morphology of the cells of origin of descending pathways to the spinal cord in Rana esculenta. A tracing study using cobalt-lysine complex. Journal fur Hirnforschung 26:365–83. [aJ-PE]
Trachtenberg M. C. & Ingle D. (1974) Thalamo-tectal projections in the frog. Brain Research 79:419–30. [aJ-PE]
Traud R. (1983) Einfluss von visuellen Reizmustern auf die juvenile Erdkröte (Bufo bufo L.). Ph.D. Dissertation, University of Kassel. [aJ-PE, DMB]
Tsai H.-J. & Ewert J.-P. (in press) Influence of stationary and moving background structures on the response of visual neurons in toads (Bufo bufo). Brain, Behavior and Evolution. [aJ-PE]
Tsai H.-J. & Ewert J.-P. (1987) Edge preference of retinal and tectal neurons in common toads (Bufo blifo) in response to worm-like moving stripes: The question of behaviorally relevant “position indicators.” Journal of Comparative Physiology 161:295304. [rJ-PE]
von Frey M. (1910) Physiologie der Sinnesorgane der mesenchlichen Haut. Ergebnisse der Physiologie 9:351–68. [GS]
von Hoist E. (1939) Die relative Koordination als Phänomen und als Methode zentralnervöser Funktionsanalyse. Ergebnisse der Physiologie 13:228306. [aJ-PE]
von Hoist E. & Mittelstaedt H. (1950) Das Reafferenzprinzip. Naturwissenschaften 37:464–76. [aJ-PE]
von Seelen W. (1970) Zur Informationsverarbeitung im visuellen System der Wirbeltiere I/II. Kybernetik 7:4360; 89–106. [rJ-PE]
von Seelen W. (1973) Systemtheoretische Beschreibung der Mustererkennung bei der Kröte. Biokybernetik V, ed. Drischel H., Dettmar P.. Jena: VEG C. Fischer Verlag. [rJ-PE]
von Uexküll J. (1909) Umtvelt und Innenwelt der Tiere. Springer-Verlag. [rJ-PE]
von Wietersheim A. & Ewert J.-P. (1978) Neurons of the toad's (Bufo bufo L.) visual system sensitive to moving configurational stimuli: A statistical analysis. Journal of Comparative Physiology 126:3542. [arJ-PE]
Weerasuriya A. (1983) Snapping in toads: Some aspects of sensorimotor interfacing and motor pattern generation. In: Advances in vertebrate neuroethology, ed. Ewert J.-P., Capranica R. R. & Ingle D. J.. Plenum. [aJ-PE]
Weerasuriya A. & Ewert J.-P. (1981) Prey-selective neurons in the toad's optic tectum and sensori-motor interfacing: HRP studies and recording experiments. Journal of Comparative Physiology 144:429–34. [aJ-PE]
Weerasuriya A. & Ewert J.-P. (1983) Afferents of some dorsal retino-recipient areas of the brain of Bufo bufo. Society for Neuroscience Abstracts 9:536. [aJ-PE]
Weerasuriya A. & Ewert J.-P. (submitted) Afferents of the hypoglossal nucleus in the toad, Bufo bufo. Brain, Behavior and Evolution [aJ-PE]
Wehner R. (1973) Das Koordinationssystem des Sehfeldes bei Arthropoden. Fortschritte der Zoologie 21:258–93. [rJ-PE]
Wiersma C. A. G. & Ikeda K. (1964) Intemeurons commanding swimmeret movements in the crayfish, Procambarus clarkii (Girard). Comparative Biochemistry and Physiology 12:509525. [aJ-PE]
Wilczynski W. & Northcutt R. G. (1977) Afferents to the optic tectum of the leopard frog: An HRP study. Journal of Comparative Neurology 173:219–29. [aJ-PE]
Wilczynski W. & Northcutt R. G. (1983a) Connections of the bullfrog striatum: Efferent projections. Journal of Comparative Neurology 214:333–43. [aJ-PE]
Wilczynski W. & Northcutt R. G. (1983b) Connections of the bullfrog striatum: Afferent organization. Journal of Comparative Neurology 214:321–32. [arJ-PE]
Wine J. J. & Krasne F. B. (1982) The cellular organization of crayfish escape behavior. In: The biology of Crustacea, vol. 4, Neural integrarion, ed. Bliss D. E., Atwood H. [JMC]
Wurtz R. H. (1979) Modulation of the primate visual system by attention and readiness to respond. In: Neurosdences research program bulletin vol. 17: Cellular mechanisms in the selection and modulation of behavior, ed. Kandel E. R., Krasne F. B., Strumwasser F. [aJ-PE]
Zucker I. (1983) Motivation, biological clocks, and temporal organization of behavior. In: Handbook of behavioral neurobiology, vol. 6: Motivation, ed. Satinoff E., Teitelbaum P.. Plenum. [rJ-PE]
Zusne L. (1970) Visual perception of form. Academic Press. [aJ-PE]
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Behavioral and Brain Sciences
  • ISSN: 0140-525X
  • EISSN: 1469-1825
  • URL: /core/journals/behavioral-and-brain-sciences
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 71 *
Loading metrics...

Abstract views

Total abstract views: 469 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th November 2017. This data will be updated every 24 hours.