Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-01T13:24:42.445Z Has data issue: false hasContentIssue false

Real models: The limits of behavioural evidence for understanding the ANS

Published online by Cambridge University Press:  15 December 2021

Denitza Dramkin
Affiliation:
Department of Psychology, University of British Columbia, Vancouver, BCV6T 1Z4, Canadaddramkin@psych.ubc.ca darko.odic@psych.ubc.ca
Darko Odic
Affiliation:
Department of Psychology, University of British Columbia, Vancouver, BCV6T 1Z4, Canadaddramkin@psych.ubc.ca darko.odic@psych.ubc.ca

Abstract

Clarke and Beck use behavioural evidence to argue that (1) approximate ratio computations are sufficient for claiming that the approximate number system (ANS) represents the rationals, and (2) the ANS does not represent the reals. We argue that pure behaviour is a poor litmus test for this problem, and that we should trust the psychophysical models that place ANS representations within the reals.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ala-Laurila, P., & Rieke, F. (2014). Coincidence detection of single-photon responses in the inner retina at the sensitivity limit of vision. Current Biology 24(24):28882898. doi: 10.1016/j.cub.2014.10.028.CrossRefGoogle Scholar
Barlow, H. B. (1956). Retinal noise and absolute threshold. Journal of the Optical Society of America 46(8):634639. doi: 10.1364/JOSA.46.000634.CrossRefGoogle ScholarPubMed
Bonn, C. D., & Cantlon, J. F. (2017). Spontaneous, modality-general abstraction of a ratio scale. Cognition 169:3645. doi: 10.1016/j.cognition.2017.07.012.CrossRefGoogle ScholarPubMed
de Hevia, M. D., Vanderslice, M., & Spelke, E. S. (2012). Cross-dimensional mapping of number, length and brightness by preschool children. PLoS One 7(4):e35530. doi: 10.1371/journal.pone.0035530.CrossRefGoogle ScholarPubMed
Dramkin, D., & Odic, D. (2020). How children interface number words with perceptual magnitudes. In Denison, S., Mack, M., Xu, Y., & Armstrong, B. C. (Eds.), Proceedings of the 42nd annual cognitive science society (pp. 32953301). Cognitive Science Society. doi: 10.31234/osf.io/zvmfd.CrossRefGoogle Scholar
Ellermeier, W., Kattner, F., & Raum, A. (2021). Cross-modal commutativity of magnitude productions of loudness and brightness. Attention, Perception, & Psychophysics, 83, 29552967. doi: 10.3758/s13414-021-02324-y.CrossRefGoogle ScholarPubMed
Fechner, G. T. (1887). Uber die psychischen massprincipien und das Weber'sche Gesetz. Philosophische Studien 4:161230.Google Scholar
Field, G. D., Sampath, A. P., & Rieke, F. (2005). Retinal processing near absolute threshold: From behavior to mechanism. Annual Review of Physiology 67:491514. doi: 10.1146/annurev.physiol.67.031103.151256.CrossRefGoogle ScholarPubMed
Jacob, S. N., Vallentin, D., & Nieder, A. (2012). Relating magnitudes: The brain's code for proportions. Trends in Cognitive Sciences 16(3):157166. doi: 10.1016/j.tics.2012.02.002.CrossRefGoogle ScholarPubMed
Laurence, S., & Margolis, E. (2005). Number and natural. The Innate Mind: Structure and Contents 1:216.CrossRefGoogle Scholar
Luce, R. D., Steingrimsson, R., & Narens, L. (2010). Are psychophysical scales of intensities the same or different when stimuli vary on other dimensions? Theory with experiments varying loudness and pitch. Psychological Review 117:12471258. doi: 10.1037/a0020174.CrossRefGoogle ScholarPubMed
Matthews, P. G., & Chesney, D. L. (2015). Fractions as percepts? Exploring cross-format distance effects for fractional magnitudes. Cognitive Psychology 78:2856. doi: 10.1016/j.cogpsych.2015.01.006.CrossRefGoogle ScholarPubMed
Odic, D. (2018). Children's intuitive sense of number develops independently of their perception of area, density, length, and time. Developmental Science 21(2):e12533. doi: 10.1111/desc.12533.CrossRefGoogle ScholarPubMed
Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron 44(3):547555. doi: 10.1016/j.neuron.2004.10.014.CrossRefGoogle ScholarPubMed
Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science (New York, N.Y.) 306(5695):499503. doi: 10.1126/science.1102085.CrossRefGoogle Scholar
Rieke, F., & Baylor, D. A. (1998). Single-photon detection by rod cells of the retina. Reviews of Modern Physics 70(3):1027. doi: 10.1103/RevModPhys.70.1027.CrossRefGoogle Scholar
Stevens, S. S. (1957). On the psychophysical law. Psychological Review 64(3):153181. doi: 10.1037/h0046162.CrossRefGoogle ScholarPubMed
Stevens, S. S. (1961). To honor Fechner and repeal his law. Science (New York, N.Y.) 133:8086. doi: 10.1126/science.133.3446.80.CrossRefGoogle ScholarPubMed