Skip to main content Accessibility help

Suboptimality in perceptual decision making

  • Dobromir Rahnev (a1) and Rachel N. Denison (a2)


Human perceptual decisions are often described as optimal. Critics of this view have argued that claims of optimality are overly flexible and lack explanatory power. Meanwhile, advocates for optimality have countered that such criticisms single out a few selected papers. To elucidate the issue of optimality in perceptual decision making, we review the extensive literature on suboptimal performance in perceptual tasks. We discuss eight different classes of suboptimal perceptual decisions, including improper placement, maintenance, and adjustment of perceptual criteria; inadequate tradeoff between speed and accuracy; inappropriate confidence ratings; misweightings in cue combination; and findings related to various perceptual illusions and biases. In addition, we discuss conceptual shortcomings of a focus on optimality, such as definitional difficulties and the limited value of optimality claims in and of themselves. We therefore advocate that the field drop its emphasis on whether observed behavior is optimal and instead concentrate on building and testing detailed observer models that explain behavior across a wide range of tasks. To facilitate this transition, we compile the proposed hypotheses regarding the origins of suboptimal perceptual decisions reviewed here. We argue that verifying, rejecting, and expanding these explanations for suboptimal behavior – rather than assessing optimality per se – should be among the major goals of the science of perceptual decision making.



Hide All

Authors D. Rahnev and R. N. Denison contributed equally to this work.



Hide All
Abrahamyan, A., Luz Silva, L., Dakin, S. C., Carandini, M. & Gardner, J. L. (2016) Adaptable history biases in human perceptual decisions. Proceedings of the National Academy of Sciences of the United States of America 113(25):E3548–57. Available at:
Abrams, J., Barbot, A. & Carrasco, M. (2010) Voluntary attention increases perceived spatial frequency. Attention, Perception, & Psychophysics 72(6):1510–21. Available at:
Acerbi, L. (2014) Complex internal representations in sensorimotor decision making: A Bayesian investigation. University of Edinburgh. Available at:
Acerbi, L., Vijayakumar, S. & Wolpert, D. M. (2014b) On the origins of suboptimality in human probabilistic inference. PLoS Computational Biology 10(6):e1003661. Available at:
Acerbi, L., Wolpert, D. M. & Vijayakumar, S. (2012) Internal representations of temporal statistics and feedback calibrate motor-sensory interval timing. PLoS Computational Biology 8(11):e1002771. Available at:
Ackermann, J. F. & Landy, M. S. (2015) Suboptimal decision criteria are predicted by subjectively weighted probabilities and rewards. Attention, Perception & Psychophysics 77(2):638–58. Available at:
Adams, J. K. (1957) A confidence scale defined in terms of expected percentages. American Journal of Psychology 70(3):432–36.
Adams, W. J. (2016) The development of audio-visual integration for temporal judgements. PLOS Computational Biology 12(4):e1004865. Available at:
Adelson, E. H. (1993) Perceptual organization and the judgment of brightness. Science 262(5142):2042–44.
Adler, W. T. & Ma, W. J. (2018a) Comparing Bayesian and non-Bayesian accounts of human confidence reports. PLoS Computational Biology.
Adler, W. T. & Ma, W. J. (2018b) Limitations of proposed signatures of Bayesian confidence. Neural Computation 30(12):3327–54.
Ais, J., Zylberberg, A., Barttfeld, P. & Sigman, M. (2015) Individual consistency in the accuracy and distribution of confidence judgments. Cognition 146:377–86. Available at:
Aitchison, L., Bang, D., Bahrami, B. & Latham, P. E. (2015) Doubly Bayesian analysis of confidence in perceptual decision-making. PLoS Computational Biology 11(10):e1004519.
Alais, D. & Burr, D. (2004) The ventriloquist effect results from near-optimal bimodal integration. Current Biology 14(3):257–62. doi:10.1016/j.cub.2004.01.029.
Allen, M., Frank, D., Schwarzkopf, D. S., Fardo, F., Winston, J. S., Hauser, T. U. & Rees, G. (2016) Unexpected arousal modulates the influence of sensory noise on confidence. eLife 5:e18103. Available at:
Anderson, B. L., O'Vari, J. & Barth, H. (2011) Non-Bayesian contour synthesis. Current Biology 21(6):492–96. Available at:
Anton-Erxleben, K., Henrich, C. & Treue, S. (2007) Attention changes perceived size of moving visual patterns. Journal of Vision 7(11):5.19. Available at:
Anton-Erxleben, K., Herrmann, K. & Carrasco, M. (2013) Independent effects of adaptation and attention on perceived speed. Psychological Science 24(2):150–59. Available at:
Balcetis, E. (2016) Approach and avoidance as organizing structures for motivated distance perception. Emotion Review 8(2):115–28. Available at:
Balcı, F., Simen, P., Niyogi, R., Saxe, A., Hughes, J. A., Holmes, P. & Cohen, J. D. (2011b) Acquisition of decision making criteria: Reward rate ultimately beats accuracy. Attention, Perception & Psychophysics 73(2):640–57. Retrieved September 11, 2015. Available at:
Bang, J. W. & Rahnev, D. (2017) Stimulus expectation alters decision criterion but not sensory signal in perceptual decision making. Scientific Reports 7:17072. Available at:
Bang, J. W., Shekhar, M. & Rahnev, D. (in press) Sensory noise increases metacognitive efficiency. Journal of Experimental Psychology.
Baranski, J. V. & Petrusic, W. M. (1994) The calibration and resolution of confidence in perceptual judgments. Perception & Psychophysics 55(4):412–28. Available at:
Baranski, J. V. & Petrusic, W. M. (1995) On the calibration of knowledge and perception. Canadian Journal of Experimental Psychology 49(3):397407. Available at:
Baranski, J. V. & Petrusic, W. M. (1999) Realism of confidence in sensory discrimination. Perception & Psychophysics 61(7):1369–83. Available at:
Barlow, H. B. (1961) Possible principles underlying the transformation of sensory messages. In: Sensory communication, ed. Rosenblith, W. A., pp. 217–34. MIT Press.
Barlow, H. B. (1990) A theory about the functional role and synaptic mechanism of visual after-effects. In: Vision: Coding and efficiency, ed. Blakemore, C., pp. 363–75. Cambridge University Press. Available at:
Battaglia, P. W., Jacobs, R. A. & Aslin, R. N. (2003) Bayesian integration of visual and auditory signals for spatial localization. Journal of the Optical Society of America A, Optics and Image Science 20(7):1391–97.
Battaglia, P. W., Kersten, D. & Schrater, P. R. (2011) How haptic size sensations improve distance perception. PLoS Computational Biology 7(6):e1002080. Available at:
Bays, P. M. & Dowding, B. A. (2017) Fidelity of the representation of value in decision-making. PLoS Computational Biology 13(3):e1005405. Available at:
Beck, J. M., Ma, W. J., Pitkow, X., Latham, P. E. & Pouget, A. (2012) Not noisy, just wrong: The role of suboptimal inference in behavioral variability. Neuron 74(1):3039. Available at:
Berger, J. O. (1985) Statistical decision theory and Bayesian analysis. Springer.
Berliner, J. E. & Durlach, N. I. (1973) Intensity perception. IV. Resolution in roving-level discrimination. Journal of the Acoustical Society of America 53(5):1270–87. Available at:
Björkman, M., Juslin, P. & Winman, A. (1993) Realism of confidence in sensory discrimination: The underconfidence phenomenon. Perception & Psychophysics 54(1):7581. Available at:
Bogacz, R. (2007) Optimal decision-making theories: Linking neurobiology with behaviour. Trends in Cognitive Sciences 11(3):118–25. Available at:
Bogacz, R., Brown, E., Moehlis, J., Holmes, P. & Cohen, J. D. (2006) The physics of optimal decision making: A formal analysis of models of performance in two-alternative forced-choice tasks. Psychological Review 113(4):700–65. Available at:
Bogacz, R., Hu, P. T., Holmes, P. J. & Cohen, J. D. (2010) Do humans produce the speed-accuracy trade-off that maximizes reward rate? Quarterly Journal of Experimental Psychology 63(5):863–91. Available at:
Bohil, C. J. & Maddox, W. T. (2001) Category discriminability, base-rate, and payoff effects in perceptual categorization. Perception & Psychophysics 63(2):361–76.
Bohil, C. J. & Maddox, W. T. (2003a) On the generality of optimal versus objective classifier feedback effects on decision criterion learning in perceptual categorization. Memory & Cognition 31(2):181–98.
Bohil, C. J. & Maddox, W. T. (2003b) A test of the optimal classifier's independence assumption in perceptual categorization. Perception & Psychophysics 65(3):478–93.
Bossaerts, P. & Murawski, C. (2017) Computational complexity and human decision-making. Trends in Cognitive Sciences 21(12):917–29. Available at:
Bowers, J. S. & Davis, C. J. (2012a) Bayesian just-so stories in psychology and neuroscience. Psychological Bulletin 138(3):389414.Available at:
Bowers, J. S. & Davis, C. J. (2012b) Is that what Bayesians believe? Reply to Griffiths, Chater, Norris, and Pouget (2012) Psychological Bulletin 138(3):423–26. Available at:
Brainard, D. H., Longère, P., Delahunt, P. B., Freeman, W. T., Kraft, J. M. & Xiao, B. (2006) Bayesian model of human color constancy. Journal of Vision 6(11):1267–81.
Brayanov, J. B. & Smith, M. A. (2010) Bayesian and ‘anti-Bayesian’ biases in sensory integration for action and perception in the size-weight illusion. Journal of Neurophysiology 103(3):1518–31. Available at:
Brenner, N., Bialek, W. & de Ruyter van Steveninck, R. (2000) Adaptive rescaling maximizes information transmission. Neuron 26(3):695702. Available at:
Bronfman, Z. Z., Brezis, N., Moran, R., Tsetsos, K., Donner, T. & Usher, M. (2015) Decisions reduce sensitivity to subsequent information. Proceedings of the Royal Society B: Biological Sciences 282(1810):20150228. Available at:
Brooke, J. B. & MacRae, A. W. (1977) Error patterns in the judgment and production of numerical proportions. Perception & Psychophysics 21(4):336–40. Available at:
Bülthoff, H. H. & Mallot, H. A. (1988) Integration of depth modules: Stereo and shading. Journal of the Optical Society of America A, Optics and Image Science 5(10):1749–58. Available at:
Burr, D., Banks, M. S. & Morrone, M. C. (2009) Auditory dominance over vision in the perception of interval duration. Experimental Brain Research 198(1):4957. Available at:
Busemeyer, J. R. & Myung, I. J. (1992) An adaptive approach to human decision making: Learning theory, decision theory, and human performance. Journal of Experimental Psychology: General 121(2):177–94. Available at:
Busse, L., Ayaz, A., Dhruv, N. T., Katzner, S., Saleem, A. B., Schölvinck, M. L., Zaharia, A. D. & Carandini, M. (2011) The detection of visual contrast in the behaving mouse. Journal of Neuroscience 31(31):11351–61. Available at:
Carandini, M. & Heeger, D. J. (2012) Normalization as a canonical neural computation. Nature Reviews Neuroscience 13(1):5162. Available at:
Carrasco, M. (2011) Visual attention: The past 25 years. Vision Research 51(13):1484–525. Available at:
Carrasco, M., Ling, S. & Read, S. (2004) Attention alters appearance. Nature Neuroscience 7(3):308–13. Available at:
Charles, L., Van Opstal, F., Marti, S. & Dehaene, S. (2013) Distinct brain mechanisms for conscious versus subliminal error detection. NeuroImage 73:8094. Available at:
Cheadle, S., Wyart, V., Tsetsos, K., Myers, N., de Gardelle, V., Castañón, S. H. & Summerfield, C. (2014) Adaptive gain control during human perceptual choice. Neuron 81(6):1429–41. Available at:
Chen, C.-C. & Tyler, C. W. (2015) Shading beats binocular disparity in depth from luminance gradients: Evidence against a maximum likelihood principle for cue combination. PLoS ONE 10(8):e0132658. Available at:
Chiang, T.-C., Lu, R.-B., Hsieh, S., Chang, Y.-H. & Yang, Y.-K. (2014) Stimulation in the dorsolateral prefrontal cortex changes subjective evaluation of percepts. PLoS ONE 9(9):e106943. Available at:
Clark, J. J. & Yullie, A. L. (1990) Data fusion for sensory information processing. Kluwer Academic.
Cooper, G. F. (1990) The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence 42(2–3):393405.
Cowan, N. (2005) Working memory capacity. Psychology Press.
Creelman, C. D. & Macmillan, N. A. (1979) Auditory phase and frequency discrimination: A comparison of nine procedures. Journal of Experimental Psychology: Human Perception and Performance 5(1):146–56. Available at:
Dakin, S. C. (2001) Information limit on the spatial integration of local orientation signals. Journal of the Optical Society of America A, Optics and Image Science 18(5):1016–26. Available at:
Davis-Stober, C. P., Park, S., Brown, N. & Regenwetter, M. (2016) Reported violations of rationality may be aggregation artifacts. Proceedings of the National Academy of Sciences of the United States of America 113(33):E4761–63. Available at:
Dawes, R. M. (1980) Confidence in intellectual vs. confidence in perceptual judgments. In: Similarity and choice: Papers in honor of Clyde Coombs, ed. Lantermann, E. D. & Feger, H., pp. 327–45. Han Huber.
Dayan, P. (2014) Rationalizable irrationalities of choice. Topics in Cognitive Science 6(2):204–28. Available at:
de Gardelle, V. & Mamassian, P. (2015) Weighting mean and variability during confidence judgments. PLoS ONE 10(3):e0120870. Available at:
de Gardelle, V. & Summerfield, C. (2011) Robust averaging during perceptual judgment. Proceedings of the National Academy of Sciences of the United States of America 108(32):13341–46. doi:10.1073/pnas.1104517108.
Dekker, T. M., Ban, H., van der Velde, B., Sereno, M. I., Welchman, A. E. & Nardini, M. (2015) Late development of cue integration is linked to sensory fusion in cortex. Current Biology 25(21): 2856–61. Available at:
de Lange, F. P., Rahnev, D., Donner, T. H. & Lau, H. (2013) Prestimulus oscillatory activity over motor cortex reflects perceptual expectations. Journal of Neuroscience 33(4):1400–10. Available at:
Del Cul, A., Dehaene, S., Reyes, P., Bravo, E. & Slachevsky, A. (2009) Causal role of prefrontal cortex in the threshold for access to consciousness. Brain 132(Pt. 9):2531–40. Available at:
Denison, R. N., Adler, W. T., Carrasco, M. & Ma, W. J. (2018) Humans incorporate attention-dependent uncertainty into perceptual decisions and confidence. Proceedings of the National Academy of Sciences of the United States of America 115(43):11090–95. doi: 10.1073/pnas.1717720115.
Drugowitsch, J., DeAngelis, G. C., Angelaki, D. E. & Pouget, A. (2015) Tuning the speed-accuracy trade-off to maximize reward rate in multisensory decision-making. eLife 4:e06678. Available at:
Drugowitsch, J., DeAngelis, G. C., Klier, E. M., Angelaki, D. E. & Pouget, A. (2014a) Optimal multisensory decision-making in a reaction-time task. eLife 3:e03005. Available at:
Drugowitsch, J., Moreno-Bote, R., Churchland, A. K., Shadlen, M. N. & Pouget, A. (2012) The cost of accumulating evidence in perceptual decision making. Journal of Neuroscience 32(11):3612–28. Available at:
Drugowitsch, J., Moreno-Bote, R. & Pouget, A. (2014b) Relation between belief and performance in perceptual decision making. PLoS ONE 9(5):e96511. Available at:
Drugowitsch, J. & Pouget, A. (2012) Probabilistic vs. non-probabilistic approaches to the neurobiology of perceptual decision-making. Current Opinion in Neurobiology 22(6):963–69. Available at:
Drugowitsch, J., Wyart, V., Devauchelle, A.-D. & Koechlin, E. (2016) Computational precision of mental inference as critical source of human choice suboptimality. Neuron 92(6):1398–411. Available at:
Eberhardt, F. & Danks, D. (2011) Confirmation in the cognitive sciences: The problematic case of Bayesian models. Minds and Machines 21(3):389410. Available at:
Eckstein, M. P. (2011) Visual search: A retrospective. Journal of Vision 11(5):14. Available at:
Ernst, M. O. & Banks, M. S. (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415(6870):429–33. Available at:
Evans, K. K., Birdwell, R. L. & Wolfe, J. M. (2013) If you don't find it often, you often don't find it: Why some cancers are missed in breast cancer screening. PLoS ONE 8(5):e64366. Available at:
Evans, K. K., Tambouret, R. H., Evered, A., Wilbur, D. C. & Wolfe, J. M. (2011) Prevalence of abnormalities influences cytologists’ error rates in screening for cervical cancer. Archives of Pathology & Laboratory Medicine 135(12):1557–60. Available at:
Fechner, G. T. (1860) Elemente der psychophysik. Breitkopf und Härtel.
Feng, S., Holmes, P., Rorie, A. & Newsome, W. T. (2009) Can monkeys choose optimally when faced with noisy stimuli and unequal rewards? PLoS Computational Biology 5(2):e1000284. Available at:
Fetsch, C. R., Pouget, A., Deangelis, G. C. & Angelaki, D. E. (2012) Neural correlates of reliability-based cue weighting during multisensory integration. Nature Neuroscience 15(1):146–54. Available at:
Firestone, C. & Scholl, B. J. (2016) Cognition does not affect perception: Evaluating the evidence for “top-down” effects. Behavioral and Brain Sciences 39:e229. Available at:
Fischer, J. & Whitney, D. (2014) Serial dependence in visual perception. Nature Neuroscience 17(5):738–43. Available at:
Fiser, J., Berkes, P., Orbán, G. & Lengyel, M. (2010) Statistically optimal perception and learning: From behavior to neural representations. Trends in Cognitive Sciences 14(3):119–30. Available at:
Fitts, P. M. (1966) Cognitive aspects of information processing: III. Set for speed versus accuracy. Journal of Experimental Psychology 71(6):849–57.
Fleming, S. M. & Daw, N. D. (2017) Self-evaluation of decision-making: A general Bayesian framework for metacognitive computation. Psychological Review 124(1):91114.
Fleming, S. M. & Lau, H. (2014) How to measure metacognition. Frontiers in Human Neuroscience 8:443. Available at:
Fleming, S. M., Maloney, L. T. & Daw, N. D. (2013) The irrationality of categorical perception. Journal of Neuroscience 33(49):19060–70. Available at:
Fleming, S. M., Maniscalco, B. & Ko, Y. (2015) Action-specific disruption of perceptual confidence. Psychological Science 26(1):8998. Available at:
Fleming, S. M., Massoni, S., Gajdos, T. & Vergnaud, J.-C. (2016) Metacognition about the past and future: Quantifying common and distinct influences on prospective and retrospective judgments of self-performance. Neuroscience of Consciousness 2016(1):niw018. Available at:
Fleming, S. M., Ryu, J., Golfinos, J. G. & Blackmon, K. E. (2014) Domain-specific impairment in metacognitive accuracy following anterior prefrontal lesions. Brain 137(10):2811–22. Available at:
Forstmann, B. U., Ratcliff, R. & Wagenmakers, E.-J. (2016) Sequential sampling models in cognitive neuroscience: Advantages, applications, and extensions. Annual Review of Psychology 67:641–66. Available at:
Fritsche, M., Mostert, P. & de Lange, F. P. (2017) Opposite effects of recent history on perception and decision. Current Biology 27(4):590–95. Available at:
Frund, I., Wichmann, F. A. & Macke, J. H. (2014) Quantifying the effect of intertrial dependence on perceptual decisions. Journal of Vision 14(7):9. doi:10.1167/14.7.9.
Fuller, S., Park, Y. & Carrasco, M. (2009) Cue contrast modulates the effects of exogenous attention on appearance. Vision Research 49(14):1825–37. Available at:
Ganmor, E., Landy, M. S. & Simoncelli, E. P. (2015) Near-optimal integration of orientation information across saccades. Journal of Vision 15(16):8. Available at:
Garcia, S. E., Jones, P. R., Reeve, E. I., Michaelides, M., Rubin, G. S. & Nardini, M. (2017) Multisensory cue combination after sensory loss: Audio-visual localization in patients with progressive retinal disease. Journal of Experimental Psychology: Human Perception and Performance 43(4):729–40. Available at:
García-Pérez, M. A. & Alcalá-Quintana, R. (2010) The difference model with guessing explains interval bias in two-alternative forced-choice detection procedures. Journal of Sensory Studies 25(6):876–98. Available at:
García-Pérez, M. A. & Alcalá-Quintana, R. (2011) Interval bias in 2AFC detection tasks: Sorting out the artifacts. Attention, Perception, & Psychophysics 73(7):2332–52. Available at:
Geisler, W. S. (2011) Contributions of ideal observer theory to vision research. Vision Research 51(7):771–81.
Geisler, W. S. & Najemnik, J. (2013) Optimal and non-optimal fixation selection in visual search. Perception ECVP Abstract 42:226. Available at:
Gekas, N., Chalk, M., Seitz, A. R. & Series, P. (2013) Complexity and specificity of experimentally-induced expectations in motion perception. Journal of Vision 13(4):8. Available at:
Gepshtein, S., Burge, J., Ernst, M. O. & Banks, M. S. (2005) The combination of vision and touch depends on spatial proximity. Journal of Vision 5(11):1013–23. Available at:
Gershman, S. J., Horvitz, E. J. & Tenenbaum, J. B. (2015) Computational rationality: A converging paradigm for intelligence in brains, minds, and machines. Science 349(6245):273–78. Available at:
Gibson, J. J. & Radner, M. (1937) Adaptation, after-effect and contrast in the perception of tilted lines. I. Quantitative studies. Journal of Experimental Psychology 20(5):453–67. Available at:
Gigerenzer, G. & Brighton, H. (2009) Homo heuristicus: Why biased minds make better inferences. Topics in Cognitive Science 1(1):107–43.
Gigerenzer, G., Hoffrage, U. & Kleinbölting, H. (1991) Probabilistic mental models: A Brunswikian theory of confidence. Psychological Review 98(4):506–28. Available at:
Gigerenzer, G. & Selten, R. (2002) Bounded rationality. MIT Press.
Girshick, A. R., Landy, M. S. & Simoncelli, E. P. (2011) Cardinal rules: Visual orientation perception reflects knowledge of environmental statistics. Nature Neuroscience 14(7):926–32. Available at:
Glennerster, A., Tcheang, L., Gilson, S. J., Fitzgibbon, A. W. & Parker, A. J. (2006) Humans ignore motion and stereo cues in favor of a fictional stable world. Current Biology 16(4):428–32. Available at:
Gobell, J. & Carrasco, M. (2005) Attention alters the appearance of spatial frequency and gap size. Psychological Science 16(8):644–51. Available at:
Gold, J. M., Murray, R. F., Bennett, P. J. & Sekuler, A. B. (2000) Deriving behavioural receptive fields for visually completed contours. Current Biology 10(11):663–66. Available at:
Goodman, N. D., Frank, M. C. & Griffiths, T. L., Tenenbaum, J. B., Battaglia, P. W. & Hamrick, J. B. (2015) Relevant and robust: A response to Marcus and Davis (2013) Psychological Science 26(4):539–41. Available at:
Gorea, A., Caetta, F. & Sagi, D. (2005) Criteria interactions across visual attributes. Vision Research 45(19):2523–32. Available at:
Gorea, A. & Sagi, D. (2000) Failure to handle more than one internal representation in visual detection tasks. Proceedings of the National Academy of Sciences of the United States of America 97(22):12380–84. Available at:
Gorea, A. & Sagi, D. (2001) Disentangling signal from noise in visual contrast discrimination. Nature Neuroscience 4(11):1146–50. Available at:
Gorea, A. & Sagi, D. (2002) Natural extinction: A criterion shift phenomenon. Visual Cognition 9(8):913–36.
Gori, M., Del Viva, M., Sandini, G. & Burr, D. C. (2008) Young children do not integrate visual and haptic form information. Current Biology 18(9):694–98. Available at:
Green, D. M. & Swets, J. A. (1966) Signal detection theory and psychophysics. John Wiley & Sons.
Griffin, D. & Tversky, A. (1992) The weighing of evidence and the determinants of confidence. Cognitive Psychology 24(3):411–35. Available at:
Griffiths, T. L., Chater, N., Norris, D. & Pouget, A. (2012) How the Bayesians got their beliefs (and what those beliefs actually are): Comment on Bowers and Davis (2012) Psychological Bulletin 138(3):415–22. Available at:
Griffiths, T. L., Lieder, F. & Goodman, N. D. (2015) Rational use of cognitive resources: Levels of analysis between the computational and the algorithmic. Topics in Cognitive Science 7(2):217–29. Available at:
Grzywacz, N. M. & Balboa, R. M. (2002) A Bayesian framework for sensory adaptation. Neural Computation 14(3):543–59. Available at:
Gu, Y., Angelaki, D. E. & DeAngelis, G. C. (2008) Neural correlates of multisensory cue integration in macaque MSTd. Nature Neuroscience 11(10):1201–10. Available at:
Hammett, S. T., Champion, R. A., Thompson, P. G. & Morland, A. B. (2007) Perceptual distortions of speed at low luminance: Evidence inconsistent with a Bayesian account of speed encoding. Vision Research 47(4):564–68. Available at:
Hanks, T. D., Mazurek, M. E., Kiani, R., Hopp, E. & Shadlen, M. N. (2011) Elapsed decision time affects the weighting of prior probability in a perceptual decision task. Journal of Neuroscience 31(17):6339–52. Available at:
Hanks, T. D. & Summerfield, C. (2017) Perceptual decision making in rodents, monkeys, and humans. Neuron 93(1):1531. Available at:
Harvey, N. (1997) Confidence in judgment. Trends in Cognitive Sciences 1(2):7882. Available at:
Hassan, O. & Hammett, S. T. (2015) Perceptual biases are inconsistent with Bayesian encoding of speed in the human visual system. Journal of Vision 15(2):9. Available at:
Hawkins, G. E., Forstmann, B. U., Wagenmakers, E.-J., Ratcliff, R. & Brown, S. D. (2015) Revisiting the evidence for collapsing boundaries and urgency signals in perceptual decision-making. Journal of Neuroscience 35(6):2476–84. Available at:
Healy, A. F. & Kubovy, M. (1981) Probability matching and the formation of conservative decision rules in a numerical analog of signal detection. Journal of Experimental Psychology: Human Learning and Memory 7(5):344–54.
Heitz, R. P. (2014) The speed-accuracy tradeoff: History, physiology, methodology, and behavior. Frontiers in Neuroscience 8:150. Available at:
Helmholtz, H. L. F. (1856) Treatise on physiological optics. Thoemmes Continuum.
Henriques, J. B., Glowacki, J. M. & Davidson, R. J. (1994) Reward fails to alter response bias in depression. Journal of Abnormal Psychology 103(3):460–66. Available at:
Hillis, J. M., Ernst, M. O., Banks, M. S. & Landy, M. S. (2002) Combining sensory information: Mandatory fusion within, but not between, senses. Science 298(5598):1627–30. Available at:
Hohwy, J., Roepstorff, A. & Friston, K. (2008) Predictive coding explains binocular rivalry: An epistemological review. Cognition 108(3):687701. Available at:
Holmes, P. & Cohen, J. D. (2014) Optimality and some of its discontents: Successes and shortcomings of existing models for binary decisions. Topics in Cognitive Science 6(2):258–78. Available at:
Jack, C. E. & Thurlow, W. R. (1973) Effects of degree of visual association and angle of displacement on the “ventriloquism” effect. Perceptual and Motor Skills 37(3):967–79. Available at:
Jacobs, R. A. (1999) Optimal integration of texture and motion cues to depth. Vision Research 39(21):3621–29. Available at:
Jastrow, J. (1892) Studies from the University of Wisconsin: On the judgment of angles and positions of lines. American Journal of Psychology 5(2):214–48. Available at:
Jaynes, E. (1957/2003) Probability theory: The logic of science. (Original lectures published 1957). Available at: Cambridge University Press.
Jazayeri, M. & Movshon, J. A. (2007) A new perceptual illusion reveals mechanisms of sensory decoding. Nature 446(7138):912–15. Available at:
Jesteadt, W. (1974) Intensity and frequency discrimination in one- and two-interval paradigms. Journal of the Acoustical Society of America 55(6):1266–76. Available at:
Jolij, J. & Lamme, V. A. F. (2005) Repression of unconscious information by conscious processing: Evidence from affective blindsight induced by transcranial magnetic stimulation. Proceedings of the National Academy of Sciences of the United States of America 102(30):10747–51. Available at:
Jones, M. & Love, B. C. (2011) Bayesian fundamentalism or enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition. Behavioral and Brain Sciences 34(4):169–88. Available at:
Juslin, P., Nilsson, H. & Winman, A. (2009) Probability theory, not the very guide of life. Psychological Review 116(4):856–74. Available at:
Kahneman, D. & Tversky, A. (1979) Prospect theory: An analysis of decision under risk. Econometrica 47(2):263–92. Retrieved March 11, 2017. Available at:
Kalenscher, T., Tobler, P. N., Huijbers, W., Daselaar, S. M. & Pennartz, C. (2010) Neural signatures of intransitive preferences. Frontiers in Human Neuroscience 4:49. Available at:
Kaneko, Y. & Sakai, K. (2015) Dissociation in decision bias mechanism between probabilistic information and previous decision. Frontiers in Human Neuroscience 9:261. Available at:
Keren, G. (1988) On the ability of monitoring non-veridical perceptions and uncertain knowledge: Some calibration studies. Acta Psychologica 67(2):95119. Available at:
Kiani, R., Corthell, L. & Shadlen, M. N. (2014) Choice certainty is informed by both evidence and decision time. Neuron 84(6):1329–42. Available at:
Kiani, R. & Shadlen, M. N. (2009) Representation of confidence associated with a decision by neurons in the parietal cortex. Science 324(5928):759–64. Available at:
Kinchla, R. A. & Smyzer, F. (1967) A diffusion model of perceptual memory. Perception & Psychophysics 2(6):219–29. Available at:
Knill, D. C. & Pouget, A. (2004) The Bayesian brain: The role of uncertainty in neural coding and computation. Trends in Neurosciences 27(12):712–19. Available at:
Knill, D. C. & Saunders, J. A. (2003) Do humans optimally integrate stereo and texture information for judgments of surface slant? Vision Research 43(24):2539–58.
Koizumi, A., Maniscalco, B. & Lau, H. (2015) Does perceptual confidence facilitate cognitive control? Attention, Perception & Psychophysics 77(4):1295–306. Available at:
Körding, K. P., Beierholm, U., Ma, W. J., Quartz, S., Tenenbaum, J. B. & Shams, L. (2007) Causal inference in multisensory perception. PLoS ONE 2(9):e943. Available at:
Körding, K. P. & Wolpert, D. M. (2004) Bayesian integration in sensorimotor learning. Nature 427(6971):244–47. Available at: .
Körding, K. P. & Wolpert, D. M. (2006) Bayesian decision theory in sensorimotor control. Trends in Cognitive Sciences 10(7):319–26. Available at:
Koriat, A. (2011) Subjective confidence in perceptual judgments: A test of the self-consistency model. Journal of Experimental Psychology: General 140(1):117–39. Available at:
Landy, M. S., Banks, M. S. & Knill, D. C. (2011) Ideal-observer models of cue integration. In: Sensory cue integration, ed. Trommershäuser, J., Körding, K. P. & Landy, M. S., pp. 529. Oxford University Press.
Landy, M. S., Goutcher, R., Trommershäuser, J. & Mamassian, P. (2007) Visual estimation under risk. Journal of Vision 7(6):4. Available at:
Landy, M. S. & Kojima, H. (2001) Ideal cue combination for localizing texture-defined edges. Journal of the Optical Society of America A, Optics and Image Science 18(9):2307–20. Available at:
Landy, M. S., Maloney, L., Johnston, E. B. & Young, M. (1995) Measurement and modeling of depth cue combination: In defense of weak fusion. Vision Research 35(3):389412.
Langer, M. S. & Bülthoff, H. H. (2001) A prior for global convexity in local shape-from-shading. Perception 30(4):403–10. Available at:
Lau, H. & Passingham, R. E. (2006) Relative blindsight in normal observers and the neural correlate of visual consciousness. Proceedings of the National Academy of Sciences of the United States of America 103(49):18763–68. Available at:
Lau, H. & Rosenthal, D. (2011) Empirical support for higher-order theories of conscious awareness. Trends in Cognitive Sciences 15(8):365–73. Available at:
Lennie, P. (2003) The cost of cortical computation. Current Biology 13(6):493–97. Available at:
Leshowitz, B. (1969) Comparison of ROC curves from one- and two-interval rating-scale procedures. Journal of the Acoustical Society of America 46(2B):399402. Available at:
Liberman, A., Fischer, J. & Whitney, D. (2014) Serial dependence in the perception of faces. Current Biology 24(21):2569–74. doi:10.1016/j.cub.2014.09.025.
Ling, S. & Carrasco, M. (2006) When sustained attention impairs perception. Nature Neuroscience 9(10):1243–45. Available at:
Liu, T., Abrams, J. & Carrasco, M. (2009) Voluntary attention enhances contrast appearance. Psychological Science 20(3):354–62. Available at:
Lupyan, G. (2012) Linguistically modulated perception and cognition: The label-feedback hypothesis. Frontiers in Psychology 3:54. Available at:
Lupyan, G. (2017) The paradox of the universal triangle: Concepts, language, and prototypes. Quarterly Journal of Experimental Psychology 70(3):389412. Available at:
Luu, L. & Stocker, A. A. (2016) Choice-induced biases in perception. bioRxiv 043224. Available at:
Ma, W. J. (2010) Signal detection theory, uncertainty, and Poisson-like population codes. Vision Research 50(22):2308–19. Available at:
Ma, W. J., Beck, J. M., Latham, P. E. & Pouget, A. (2006) Bayesian inference with probabilistic population codes. Nature Neuroscience 9(11):1432–38. Available at:
Macmillan, N. A. & Creelman, C. D. (2005) Detection theory: A user's guide. 2nd edition. Erlbaum.
Maddox, W. T. (1995) Base-rate effects in multidimensional perceptual categorization. Journal of Experimental Psychology: Learning, Memory, and Cognition 21(2):288301. Available at:
Maddox, W. T. (2002) Toward a unified theory of decision criterion learning in perceptual categorization. Journal of the Experimental Analysis of Behavior 78(3):567–95. Available at:
Maddox, W. T. & Bohil, C. J. (1998a) Base-rate and payoff effects in multidimensional perceptual categorization. Journal of Experimental Psychology: Learning, Memory, and Cognition 24(6):1459–82.
Maddox, W. T. & Bohil, C. J. (1998b) Overestimation of base-rate differences in complex perceptual categories. Perception & Psychophysics 60(4):575–92.
Maddox, W. T. & Bohil, C. J. (2000) Costs and benefits in perceptual categorization. Memory & Cognition 28(4):597615.
Maddox, W. T. & Bohil, C. J. (2001) Feedback effects on cost-benefit learning in perceptual categorization. Memory & Cognition 29(4):598615.
Maddox, W. T. & Bohil, C. J. (2003) A theoretical framework for understanding the effects of simultaneous base-rate and payoff manipulations on decision criterion learning in perceptual categorization. Journal of Experimental Psychology: Learning, Memory, and Cognition 29(2):307–20.
Maddox, W. T. & Bohil, C. J. (2004) Probability matching, accuracy maximization, and a test of the optimal classifier's independence assumption in perceptual categorization. Perception & Psychophysics 66(1):104–18.
Maddox, W. T. & Bohil, C. J. (2005) Optimal classifier feedback improves cost-benefit but not base-rate decision criterion learning in perceptual categorization. Memory & Cognition 33(2):303–19.
Maddox, W. T., Bohil, C. J. & Dodd, J. L. (2003) Linear transformations of the payoff matrix and decision criterion learning in perceptual categorization. Journal of Experimental Psychology: Learning, Memory, and Cognition 29(6):1174–93.
Maddox, W. T. & Dodd, J. L. (2001) On the relation between base-rate and cost-benefit learning in simulated medical diagnosis. Journal of Experimental Psychology: Learning, Memory, and Cognition 27(6):1367–84. Available at:
Maiworm, M. & Röder, B. (2011) Suboptimal auditory dominance in audiovisual integration of temporal cues. Tsinghua Science & Technology 16(2):121–32.
Maloney, L. T. & Landy, M. S. (1989) A statistical framework for robust fusion of depth information. In: Proceedings of Society of Photo-Optical Instrumentation Engineers (SPIE) 1119, Visual Communications and Image Processing IV, ed. Pearlman, W. A., pp. 1154–63. SPIE. Available at:
Maloney, L. T. & Mamassian, P. (2009) Bayesian decision theory as a model of human visual perception: Testing Bayesian transfer. Visual Neuroscience 26(1):147–55. Available at:
Maloney, L. T. & Zhang, H. (2010) Decision-theoretic models of visual perception and action. Vision Research 50(23):2362–74. Available at:
Maniscalco, B. & Lau, H. (2010) Comparing signal detection models of perceptual decision confidence. Journal of Vision 10(7):213. Available at:
Maniscalco, B. & Lau, H. (2012) A signal detection theoretic approach for estimating metacognitive sensitivity from confidence ratings. Consciousness and Cognition 21(1):422–30. Available at:
Maniscalco, B. & Lau, H. (2015) Manipulation of working memory contents selectively impairs metacognitive sensitivity in a concurrent visual discrimination task. Neuroscience of Consciousness 2015(1):niv002. Available at:
Maniscalco, B. & Lau, H. (2016) The signal processing architecture underlying subjective reports of sensory awareness. Neuroscience of Consciousness 2016(1):niw002.
Maniscalco, B., Peters, M. A. K. & Lau, H. (2016) Heuristic use of perceptual evidence leads to dissociation between performance and metacognitive sensitivity. Attention, Perception & Psychophysics 78(3):923–37. Available at:
Marcus, G. F. & Davis, E. (2013) How robust are probabilistic models of higher-level cognition? Psychological Science 24(12):2351–60. Available at:
Marcus, G. F. & Davis, E. (2015) Still searching for principles: A response to Goodman et al. (2015) Psychological Science 26(4):542–44. Available at:
Markman, A. B., Baldwin, G. C. & Maddox, W. T. (2005) The interaction of payoff structure and regulatory focus in classification. Psychological Science 16(11):852–55. Available at:
Markowitz, J. & Swets, J. A. (1967) Factors affecting the slope of empirical ROC curves: Comparison of binary and rating responses. Perception & Psychophysics 2(3):91100. Available at:
Massoni, S. (2014) Emotion as a boost to metacognition: How worry enhances the quality of confidence. Consciousness and Cognition 29:189–98. Available at:
Massoni, S., Gajdos, T. & Vergnaud, J.-C. (2014) Confidence measurement in the light of signal detection theory. Frontiers in Psychology 5:1455. Available at:
McCurdy, L. Y., Maniscalco, B., Metcalfe, J., Liu, K. Y., de Lange, F. P. & Lau, H. (2013) Anatomical coupling between distinct metacognitive systems for memory and visual perception. Journal of Neuroscience 33(5):1897–906. Available at:
Metcalfe, J. & Shimamura, A. P. (1994) Metacognition: Knowing about knowing. MIT Press.
Michael, E., de Gardelle, V., Nevado-Holgado, A. & Summerfield, C. (2015) Unreliable evidence: 2 Sources of uncertainty during perceptual choice. Cerebral Cortex 25(4):937–47. Available at:
Michael, E., de Gardelle, V. & Summerfield, C. (2014) Priming by the variability of visual information. Proceedings of the National Academy of Sciences of the United States of America 111(21):7873–78. Available at:
Morales, J., Solovey, G., Maniscalco, B., Rahnev, D., de Lange, F. P. & Lau, H. (2015) Low attention impairs optimal incorporation of prior knowledge in perceptual decisions. Attention, Perception & Psychophysics 77(6):2021–36. Available at:
Mozer, M. C., Pashler, H. & Homaei, H. (2008) Optimal predictions in everyday cognition: The wisdom of individuals or crowds? Cognitive Science 32(7):1133–47.
Mueller, S. T. & Weidemann, C. T. (2008) Decision noise: An explanation for observed violations of signal detection theory. Psychonomic Bulletin & Review 15(3):465–94. Available at:
Nardini, M., Bedford, R. & Mareschal, D. (2010) Fusion of visual cues is not mandatory in children. Proceedings of the National Academy of Sciences of the United States of America 107(39):17041–46. Available at:
Nardini, M., Jones, P., Bedford, R. & Braddick, O. (2008) Development of cue integration in human navigation. Current Biology 18(9):689–93. Available at:
Navajas, J., Hindocha, C., Foda, H., Keramati, M., Latham, P. E. & Bahrami, B. (2017) The idiosyncratic nature of confidence. Nature Human Behaviour 1(11):810–18. Available at:
Navajas, J., Sigman, M. & Kamienkowski, J. E. (2014) Dynamics of visibility, confidence, and choice during eye movements. Journal of Experimental Psychology: Human Perception and Performance 40(3):1213–27. Available at:
Norton, E. H., Fleming, S. M., Daw, N. D. & Landy, M. S. (2017) Suboptimal criterion learning in static and dynamic environments. PLoS Computational Biology 13(1):e1005304.
Odegaard, B., Wozny, D. R. & Shams, L. (2015) Biases in visual, auditory, and audiovisual perception of space. PLoS Computational Biology 11(12):e1004649. Available at:
Olzak, L. A. (1985) Interactions between spatially tuned mechanisms: Converging evidence. Journal of the Optical Society of America A, Optics and Image Science 2(9):1551–59.
Oruç, I., Maloney, L. T. & Landy, M. S. (2003) Weighted linear cue combination with possibly correlated error. Vision Research 43(23):2451–68. Available at:
Osgood, C. E. (1953) Method and theory in experimental psychology. Oxford University Press.
Oud, B., Krajbich, I., Miller, K., Cheong, J. H., Botvinick, M. & Fehr, E. (2016) Irrational time allocation in decision-making. Proceedings of the Royal Society B: Biological Sciences 283(1822):20151439. Available at:
Peters, M. A. K., Ma, W. J. & Shams, L. (2016) The size-weight illusion is not anti-Bayesian after all: A unifying Bayesian account. PeerJ 4:e2124. Available at:
Petrini, K., Remark, A., Smith, L. & Nardini, M. (2014) When vision is not an option: Children's integration of auditory and haptic information is suboptimal. Developmental Science 17(3):376–87. Available at:
Petzschner, F. H. & Glasauer, S. (2011) Iterative Bayesian estimation as an explanation for range and regression effects: A study on human path integration. Journal of Neuroscience 31(47):17220–29. Available at:
Plaisier, M. A., van Dam, L. C. J., Glowania, C. & Ernst, M. O. (2014) Exploration mode affects visuohaptic integration of surface orientation. Journal of Vision 14(13):22. Available at:
Pleskac, T. J. & Busemeyer, J. R. (2010) Two-stage dynamic signal detection: A theory of choice, decision time, and confidence. Psychological Review 117(3):864901. Available at:
Prsa, M., Gale, S. & Blanke, O. (2012) Self-motion leads to mandatory cue fusion across sensory modalities. Journal of Neurophysiology 108(8):2282–91. Available at:
Pynn, C. T. (1972) Intensity perception. III. Resolution in small-range identification. Journal of the Acoustical Society of America 51(2B):559–66. Available at:
Rahnev, D., Bahdo, L., de Lange, F. P. & Lau, H. (2012a) Prestimulus hemodynamic activity in dorsal attention network is negatively associated with decision confidence in visual perception. Journal of Neurophysiology 108(5):1529–36. Available at:
Rahnev, D., Koizumi, A., McCurdy, L. Y., D'Esposito, M. & Lau, H. (2015) Confidence leak in perceptual decision making. Psychological Science 26(11):1664–80. Available at:
Rahnev, D., Kok, P., Munneke, M., Bahdo, L., de Lange, F. P. & Lau, H. (2013) Continuous theta burst transcranial magnetic stimulation reduces resting state connectivity between visual areas. Journal of Neurophysiology 110(8):1811–21. Available at:
Rahnev, D., Lau, H. & de Lange, F. P. (2011a) Prior expectation modulates the interaction between sensory and prefrontal regions in the human brain. Journal of Neuroscience 31(29):10741–48.
Rahnev, D., Maniscalco, B., Graves, T., Huang, E., de Lange, F. P. & Lau, H. (2011b) Attention induces conservative subjective biases in visual perception. Nature Neuroscience 14(12):1513–15. Available at:
Rahnev, D., Maniscalco, B., Luber, B., Lau, H. & Lisanby, S. H. (2012b) Direct injection of noise to the visual cortex decreases accuracy but increases decision confidence. Journal of Neurophysiology 107(6):1556–63. Available at:
Rahnev, D., Nee, D. E., Riddle, J., Larson, A. S. & D'Esposito, M. (2016) Causal evidence for frontal cortex organization for perceptual decision making. Proceedings of the National Academy of Sciences of the United States of America 113(20):6059–64. Available at:
Ramachandran, V. (1990) Interactions between motion, depth, color and form: The utilitarian theory of perception. In: Vision: Coding and efficiency, ed. Blakemore, C., pp. 346–60. Cambridge University Press.
Ratcliff, R. & Starns, J. J. (2009) Modeling confidence and response time in recognition memory. Psychological Review 116(1):5983. Available at:
Rauber, H. J. & Treue, S. (1998) Reference repulsion when judging the direction of visual motion. Perception 27(4):393402. Available at:
Raviv, O., Ahissar, M. & Loewenstein, Y. (2012) How recent history affects perception: The normative approach and its heuristic approximation. PLoS Computational Biology 8(10):e1002731. Available at:
Reckless, G. E., Bolstad, I., Nakstad, P. H., Andreassen, O. A. & Jensen, J. (2013) Motivation alters response bias and neural activation patterns in a perceptual decision-making task. Neuroscience 238:135–47. Available at:
Reckless, G. E., Ousdal, O. T., Server, A., Walter, H., Andreassen, O. A. & Jensen, J. (2014) The left inferior frontal gyrus is involved in adjusting response bias during a perceptual decision-making task. Brain and Behavior 4(3):398407. Available at:
Regenwetter, M., Cavagnaro, D. R., Popova, A., Guo, Y., Zwilling, C., Lim, S. H. & Stevens, J. R. (2017) Heterogeneity and parsimony in intertemporal choice. Decision 5(2):6394. Available at:
Regenwetter, M., Dana, J. & Davis-Stober, C. P. (2010) Testing transitivity of preferences on two-alternative forced choice data. Frontiers in Psychology 1:148. Available at:
Regenwetter, M., Dana, J., Davis-Stober, C. P. & Guo, Y. (2011) Parsimonious testing of transitive or intransitive preferences: Reply to Birnbaum (2011) Psychological Review 118(4):684–88. Available at:
Renart, A. & Machens, C. K. (2014) Variability in neural activity and behavior. Current Opinion in Neurobiology 25:211–20. Available at:
Roach, N. W., Heron, J. & McGraw, P. V. (2006) Resolving multisensory conflict: A strategy for balancing the costs and benefits of audio-visual integration. Proceedings of the Royal Society B: Biological Sciences 273(1598):2159–68. doi:10.1098/rspb.2006.3578.
Rosas, P., Wagemans, J., Ernst, M. O. & Wichmann, F. A. (2005) Texture and haptic cues in slant discrimination: Reliability-based cue weighting without statistically optimal cue combination. Journal of the Optical Society of America A, Optics and Image Science 22(5):801809.
Rosas, P. & Wichmann, F. A. (2011) Cue combination: Beyond optimality. In: Sensory cue integration, ed. Trommershäuser, J., Körding, K. P. & Landy, M. S., pp. 144–52. Oxford University Press.
Rosas, P., Wichmann, F. A. & Wagemans, J. (2007) Texture and object motion in slant discrimination: Failure of reliability-based weighting of cues may be evidence for strong fusion. Journal of Vision 7(6):3. Available at:
Saarela, T. P. & Landy, M. S. (2015) Integration trumps selection in object recognition. Current Biology 25(7):920–27. Available at:
Sabra, A. I. (1989) The optics of Ibn Al-Haytham, Books I–III: On direct vision. Warburg Institute.
Samaha, J., Barrett, J. J., Sheldon, A. D., LaRocque, J. J. & Postle, B. R. (2016) Dissociating perceptual confidence from discrimination accuracy reveals no influence of metacognitive awareness on working memory. Frontiers in Psychology 7:851. Available at:
Sanders, J. I., Hangya, B. & Kepecs, A. (2016) Signatures of a statistical computation in the human sense of confidence. Neuron 90(3):499506. Available at:
Schulman, A. I. & Mitchell, R. R. (1966) Operating characteristics from yes-no and forced-choice procedures. Journal of the Acoustical Society of America 40(2):473–77. Available at:
Schurger, A., Kim, M.-S. & Cohen, J. D. (2015) Paradoxical interaction between ocular activity, perception, and decision confidence at the threshold of vision. PLoS ONE 10(5):e0125278. Available at:
Schwiedrzik, C. M., Ruff, C. C., Lazar, A., Leitner, F. C., Singer, W. & Melloni, L. (2014) Untangling perceptual memory: Hysteresis and adaptation map into separate cortical networks. Cerebral Cortex 24(5):1152–64. Available at:
See, J. E., Warm, J. S., Dember, W. N. & Howe, S. R. (1997) Vigilance and signal detection theory: An empirical evaluation of five measures of response bias. Human Factors 39(1):1429. Available at:
Seriès, P. & Seitz, A. R. (2013) Learning what to expect (in visual perception). Frontiers in Human Neuroscience 7:668. Available at:
Shen, S. & Ma, W. J. (2016) A detailed comparison of optimality and simplicity in perceptual decision making. Psychological Review 123(4):452–80. Available at:
Sherman, M. T., Seth, A. K., Barrett, A. B. & Kanai, R. (2015) Prior expectations facilitate metacognition for perceptual decision. Consciousness and Cognition 35:5365. Available at:
Simen, P., Contreras, D., Buck, C., Hu, P., Holmes, P. & Cohen, J. D. (2009) Reward-rate optimization in two-alternative decision making: Empirical tests of theoretical predictions. Journal of Experimental Psychology: Human Perception and Performance 35:1865–97. Available at:
Simon, H. A. (1956) Rational choice and the structure of the environment. Psychological Review 63(2):129–38.
Simon, H. A. (1957) A behavioral model of rational choice. In: Models of man, social and rational: Mathematical essays on rational human behavior in a social setting, pp. 99118. Wiley.
Snyder, J. S., Schwiedrzik, C. M., Vitela, A. D. & Melloni, L. (2015) How previous experience shapes perception in different sensory modalities. Frontiers in Human Neuroscience 9:594. Available at:
Solovey, G., Graney, G. G. & Lau, H. (2015) A decisional account of subjective inflation of visual perception at the periphery. Attention, Perception & Psychophysics 77(1):258–71. Available at:
Song, A., Koizumi, A. & Lau, H. (2015) A behavioral method to manipulate metacognitive awareness independent of stimulus awareness. In: Behavioral methods in consciousness research, ed. Overgaard, M., pp. 7785. Oxford University Press.
Song, C., Kanai, R., Fleming, S. M., Weil, R. S., Schwarzkopf, D. S. & Rees, G. (2011) Relating inter-individual differences in metacognitive performance on different perceptual tasks. Consciousness and Cognition 20(4):1787–92. Available at:
Spence, M. L., Dux, P. E. & Arnold, D. H. (2016) Computations underlying confidence in visual perception. Journal of Experimental Psychology: Human Perception and Performance 42(5):671–82. Available at:
Starns, J. J. & Ratcliff, R. (2010) The effects of aging on the speed–accuracy compromise: Boundary optimality in the diffusion model. Psychology and Aging 25(2):377–90. Available at:
Starns, J. J. & Ratcliff, R. (2012) Age-related differences in diffusion model boundary optimality with both trial-limited and time-limited tasks. Psychonomic Bulletin & Review 19(1):139–45. Available at:
Stocker, A. A. & Simoncelli, E. P. (2006a) Noise characteristics and prior expectations in human visual speed perception. Nature Neuroscience 9(4):578–85. Available at:
Stocker, A. A. & Simoncelli, E. P. (2006b) Sensory adaptation within a Bayesian framework for perception. In: Advances in neural information processing systems 18 (proceedings from the conference, Neural Information Processing Systems 2005), ed. Weiss, Y. & Schölkopf, B. & Platt, J. C.. Available at:
Stocker, A. A. & Simoncelli, E. P. (2008) A Bayesian model of conditioned perception. In: Advances in neural information processing systems 20 (proceedings from the conference, Neural Information Processing Systems 2007), ed. Platt, J. C., Koller, D., Singer, Y. & Roweis, S.. Available at:
Stone, L. S. & Thompson, P. (1992) Human speed perception is contrast dependent. Vision Research 32(8):1535–49. Available at:
Störmer, V. S., Mcdonald, J. J. & Hillyard, S. A. (2009) Cross-modal cueing of attention alters appearance and early cortical processing of visual stimuli. Proceedings of the National Academy of Sciences of the United States of America 106(52):22456–61. Available at:
Summerfield, C. & Koechlin, E. (2010) Economic value biases uncertain perceptual choices in the parietal and prefrontal cortices. Frontiers in Human Neuroscience 4:208. Available at:
Summerfield, C. & Tsetsos, K. (2015) Do humans make good decisions? Trends in Cognitive Sciences 19(1):2734. Available at:
Sun, J. & Perona, P. (1997) Shading and stereo in early perception of shape and reflectance. Perception 26(4):519–29. Available at:
Swets, J. A. & Green, D. M. (1961) Sequential observations by human observers of signals in noise. In: Information theory: Proceedings of the fourth London symposium, ed. Cherry, C., pp. 177–95. Butterworth.
Swets, J. A., Tanner, W. P. & Birdsall, T. G. (1961) Decision processes in perception. Psychological Review 68(5):301–40. Available at:
Tanner, T. A., Haller, R. W. & Atkinson, R. C. (1967) Signal recognition as influenced by presentation schedules. Perception & Psychophysics 2(8):349–58. Available at:
Tanner, W. P. (1956) Theory of recognition. Journal of the Acoustical Society of America 28:882–88.
Tanner, W. P. (1961) Physiological implications of psychophysical data. Annals of the New York Academy of Sciences 89:752–65. Available at:
Tauber, S., Navarro, D. J., Perfors, A. & Steyvers, M. (2017) Bayesian models of cognition revisited: Setting optimality aside and letting data drive psychological theory. Psychological Review 124(4):410–41.
Taylor, S. F., Welsh, R. C., Wagner, T. D., Phan, K. L., Fitzgerald, K. D. & Gehring, W. J. (2004) A functional neuroimaging study of motivation and executive function. NeuroImage 21(3):1045–54. Available at:
Tenenbaum, J. B. & Griffiths, T. L. (2006) Optimal predictions in everyday cognition. Psychological Science 17(9):767–73.
Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. (2011) How to grow a mind: Statistics, structure, and abstraction. Science 331(6022):1279–85. Available at:
Thompson, P. (1982) Perceived rate of movement depends on contrast. Vision Research 22(3):377–80. Available at:
Thompson, P., Brooks, K. & Hammett, S. T. (2006) Speed can go up as well as down at low contrast: Implications for models of motion perception. Vision Research 46(6–7):782–86. Available at:
Thura, D., Beauregard-Racine, J., Fradet, C.-W. & Cisek, P. (2012) Decision making by urgency gating: Theory and experimental support. Journal of Neurophysiology 108(11):2912–30. Available at:
Treisman, M. & Faulkner, A. (1984) The setting and maintenance of criteria representing levels of confidence. Journal of Experimental Psychology: Human Perception and Performance 10(1):119–39. Available at:
Trommershäuser, J. (2009) Biases and optimality of sensory-motor and cognitive decisions. Progress in Brain Research 174:267–78. Available at:
Trommershäuser, J., Körding, K. P. & Landy, M. S., eds. (2011) Sensory cue integration. Oxford University Press.
Tse, P. U. (2005) Voluntary attention modulates the brightness of overlapping transparent surfaces. Vision Research 45(9):1095–98. Available at:
Tsetsos, K., Moran, R., Moreland, J., Chater, N., Usher, M. & Summerfield, C. (2016a) Economic irrationality is optimal during noisy decision making. Proceedings of the National Academy of Sciences of the United States of America 113(11):3102–107. Available at:
Tsetsos, K., Pfeffer, T., Jentgens, P. & Donner, T. H. (2015) Action planning and the timescale of evidence accumulation. PLoS ONE 10(6):e0129473.
Tsotsos, J. K. (1993) The role of computational complexity in perceptual theory. Advances in Psychology 99:261–96.
Turatto, M., Vescovi, M. & Valsecchi, M. (2007) Attention makes moving objects be perceived to move faster. Vision Research 47(2):166–78. Available at:
Turnbull, W. H. (1961) The correspondence of Isaac Newton. Vol. 3, 1688–1694. Cambridge University Press.
Ulehla, Z. J. (1966) Optimality of perceptual decision criteria. Journal of Experimental Psychology 71(4):564–69. Available at:
van Beers, R. J., Sittig, A. C. & van der Gon Denier, J. J. (1996) How humans combine simultaneous proprioceptive and visual position information. Experimental Brain Research 111(2):253–61.
van den Berg, R., Yoo, A. H. & Ma, W. J. (2017) Fechner's law in metacognition: A quantitative model of visual working memory confidence. Psychological Review 124(2):197214.
vandormael, H., Castañón, S. H., Balaguer, J., Li, V. & Summerfield, C. (2017) Robust sampling of decision information during perceptual choice. Proceedings of the National Academy of Sciences of the United States of America 114(10):2771–76. Available at:
van Rooij, I. (2008) The tractable cognition thesis. Cognitive Science 32(6):939–84. Available at:
van Wert, M. J., Horowitz, T. S. & Wolfe, J. M. (2009) Attention, Perception & Psychophysics 71(3):541–53. Available at:
Varey, C. A., Mellers, B. A. & Birnbaum, M. H. (1990) Judgments of proportions. Journal of Experimental Psychology: Human Perception and Performance 16(3):613–25. Available at:
Vaziri-Pashkam, M. & Cavanagh, P. (2008) Apparent speed increases at low luminance. Journal of Vision 8(16):9. Available at:
Vickers, D. (1979) Decision processes in visual perception. Academic Press.
Vickers, D. & Packer, J. (1982) Effects of alternating set for speed or accuracy on response time, accuracy and confidence in a unidimensional discrimination task. Acta Psychologica 50(2):179–97.
Viemeister, N. F. (1970) Intensity discrimination: Performance in three paradigms. Perception & Psychophysics 8(6):417–19. Available at:
Vincent, B. (2011) Covert visual search: Prior beliefs are optimally combined with sensory evidence. Journal of Vision 11(13):25.
Vintch, B. & Gardner, J. L. (2014) Cortical correlates of human motion perception biases. Journal of Neuroscience 34(7):2592–604. Available at:
Vlassova, A., Donkin, C. & Pearson, J. (2014) Unconscious information changes decision accuracy but not confidence. Proceedings of the National Academy of Sciences of the United States of America 111(45):16214–18. Available at:
von Winterfeldt, D. & Edwards, W. (1982) Costs and payoffs in perceptual research. Psychological Bulletin 91(3):609–22.
Vul, E., Goodman, N., Griffiths, T. L. & Tenenbaum, J. B. (2014) One and done? Optimal decisions from very few samples. Cognitive Science 38(4):599637. Available at:
Wainwright, M. J. (1999) Visual adaptation as optimal information transmission. Vision Research 39(23):3960–74. Available at:
Ward, L. M. & Lockhead, G. R. (1970) Sequential effects and memory in category judgments. Journal of Experimental Psychology 84(1):2734. Available at:
Wark, B., Lundstrom, B. N. & Fairhall, A. (2007) Sensory adaptation. Current Opinion in Neurobiology 17(4):423–29. Available at:
Warren, D. H. & Cleaves, W. T. (1971) Visual-proprioceptive interaction under large amounts of conflict. Journal of Experimental Psychology 90(2):206–14. Available at:
Watson, C. S., Kellogg, S. C., Kawanishi, D. T. & Lucas, P. A. (1973) The uncertain response in detection-oriented psychophysics. Journal of Experimental Psychology 99(2):180–85.
Webster, M. A. (2015) Visual adaptation. Annual Review of Vision Science 1:547–67. Available at:
Webster, M. A., Kaping, D., Mizokami, Y. & Duhamel, P. (2004) Adaptation to natural facial categories. Nature 428(6982):557–61. Available at:
Webster, M. A. & MacLeod, D. I. A. (2011) Visual adaptation and face perception. Philosophical Transactions of the Royal Society B: Biological Sciences 366(1571):1702–25. Available at:
Wei, K. & Körding, K. P. (2011) Causal inference in sensorimotor learning and control. In: Sensory cue integration, ed. Trommershäuser, J., Körding, K. & Landy, M. S., pp. 3045. Oxford University Press.
Wei, X.-X. & Stocker, A. A. (2013) Efficient coding provides a direct link between prior and likelihood in perceptual Bayesian inference. In: Advances in neural information processing systems 25 (proceedings from the conference, Neural Information Processing Systems 2012), ed. Pereira, F., Burges, C. J. C., Bottou, L. & Weinberger, K. Q.. Available at:
Wei, X.-X. & Stocker, A. A. (2015) A Bayesian observer model constrained by efficient coding can explain “anti-Bayesian” percepts. Nature Neuroscience 18:1509–17. Available at:
Weil, L. G., Fleming, S. M., Dumontheil, I., Kilford, E. J., Weil, R. S., Rees, G., Dolan, R. J., Blakemore, S.-J. (2013) The development of metacognitive ability in adolescence. Consciousness and Cognition 22(1):264–71. Available at:
Weiskrantz, L. (1996) Blindsight revisited. Current Opinion in Neurobiology 6(2):215–20. Available at:
Weiss, Y., Simoncelli, E. P. & Adelson, E. H. (2002) Motion illusions as optimal percepts. Nature Neuroscience 5(6):598604. Available at:
Whiteley, L. & Sahani, M. (2008) Implicit knowledge of visual uncertainty guides decisions with asymmetric outcomes. Journal of Vision 8(3):2.115. Available at:
Whiteley, L. & Sahani, M. (2012) Attention in a Bayesian framework. Frontiers in Human Neuroscience 6:100. Available at:
Wilimzig, C., Tsuchiya, N., Fahle, M., Einhäuser, W. & Koch, C. (2008) Spatial attention increases performance but not subjective confidence in a discrimination task. Journal of Vision 8(5):110. Available at:
Winman, A. & Juslin, P. (1993) Calibration of sensory and cognitive judgments: Two different accounts. Scandinavian Journal of Psychology 34(2):135–48. Available at:
Witt, J. K. (2011) Action's effect on perception. Current Directions in Psychological Science 20(3):201206. Available at:
Witt, J. K., Proffitt, D. R. & Epstein, W. (2005) Tool use affects perceived distance, but only when you intend to use it. Journal of Experimental Psychology: Human Perception and Performance 31(5):880–88. Available at:
Wohlgemuth, A. (1911) On the after-effect of seen movement. Cambridge University Press. Available at:
Wolfe, J. M., Brunelli, D. N., Rubinstein, J. & Horowitz, T. S. (2013) Prevalence effects in newly trained airport checkpoint screeners: Trained observers miss rare targets, too. Journal of Vision 13(3):33. Available at:
Wolfe, J. M., Horowitz, T. S. & Kenner, N. M. (2005) Cognitive psychology: Rare items often missed in visual searches. Nature 435(7041):439–40. Available at:
Wolfe, J. M., Horowitz, T. S., Van Wert, M. J., Kenner, N. M., Place, S. S. & Kibbi, N. (2007) Low target prevalence is a stubborn source of errors in visual search tasks. Journal of Experimental Psychology: General 136(4):623–38. Available at:
Wolfe, J. M. & Van Wert, M. J. (2010) Varying target prevalence reveals two dissociable decision criteria in visual search. Current Biology 20(2):121–24. Available at:
Wyart, V. & Koechlin, E. (2016) Choice variability and suboptimality in uncertain environments. Current Opinion in Behavioral Sciences 11:109–15. Available at:
Wyart, V., Myers, N. E. & Summerfield, C. (2015) Neural mechanisms of human perceptual choice under focused and divided attention. Journal of Neuroscience 35(8):3485–98. Available at:
Yamins, D. L. K., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D. & DiCarlo, J. J. (2014) Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proceedings of the National Academy of Sciences of the United States of America 111(23):8619–24. Available at:
Yeshurun, Y. & Carrasco, M. (1998) Attention improves or impairs visual performance by enhancing spatial resolution. Nature 396(6706):7275. Available at:
Yeshurun, Y., Carrasco, M. & Maloney, L. T. (2008) Bias and sensitivity in two-interval forced choice procedures: Tests of the difference model. Vision Research 48(17):1837–51. Available at:
Yeung, N. & Summerfield, C. (2012) Metacognition in human decision-making: Confidence and error monitoring. Philosophical Transactions of the Royal Society of London: Series B, Biological Sciences 367(1594):1310–21. Available at:
Yu, A. J. & Cohen, J. D. (2009) Sequential effects: Superstition or rational behavior? In: Advances in neural information processing systems 21 (proceedings from the conference, Neural Information Processing Systems 2008), ed. Koller, D., Schuurmans, D., Bengio, Y. & Bottou, L.. Available at:
Zacksenhouse, M., Bogacz, R. & Holmes, P. (2010) Robust versus optimal strategies for two-alternative forced choice tasks. Journal of Mathematical Psychology 54(2):230–46. Available at:
Zak, I., Katkov, M., Gorea, A. & Sagi, D. (2012) Decision criteria in dual discrimination tasks estimated using external-noise methods. Attention, Perception & Psychophysics 74(5):1042–55. Available at:
Zamboni, E., Ledgeway, T., McGraw, P. V. & Schluppeck, D. (2016) Do perceptual biases emerge early or late in visual processing? Decision-biases in motion perception. Proceedings of the Royal Society B: Biological Sciences 283(1833):20160263. Available at:
Zhang, H. & Maloney, L. T. (2012) Ubiquitous log odds: A common representation of probability and frequency distortion in perception, action, and cognition. Frontiers in Neuroscience 6:1. Available at:
Zhang, H., Morvan, C. & Maloney, L. T. (2010) Gambling in the visual periphery: A conjoint-measurement analysis of human ability to judge visual uncertainty. PLoS Computational Biology 6(12):1001023. Available at:
Zylberberg, A., Barttfeld, P. & Sigman, M. (2012) The construction of confidence in a perceptual decision. Frontiers in Integrative Neuroscience 6:79. Available at:
Zylberberg, A., Roelfsema, P. R. & Sigman, M. (2014) Variance misperception explains illusions of confidence in simple perceptual decisions. Consciousness and Cognition 27:246–53. Available at:
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Behavioral and Brain Sciences
  • ISSN: 0140-525X
  • EISSN: 1469-1825
  • URL: /core/journals/behavioral-and-brain-sciences
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed