Skip to main content Accessibility help

Symbols in numbers: From numerals to magnitude information

  • Oliver Lindemann (a1), Shirley-Ann Rueschemeyer (a1) and Harold Bekkering (a1)


A dual-code model of number processing needs to take into account the difference between a number symbol and its meaning. The transition of automatic non-abstract number representations into intentional abstract representations could be conceptualized as a translation of perceptual asemantic representations of numerals into semantic representations of the associated magnitude information. The controversy about the nature of number representations should be thus related to theories on embodied grounding of symbols.



Hide All
Andres, M., Davare, M., Pesenti, M., Olivier, E. & Seron, X. (2004) Number magnitude and grip aperture interaction. NeuroReport 15(18):2773–77.
Barsalou, L. W., Santos, A., Simmons, W. K. & Wilson, C. D. (2008) Language and simulation in conceptual processing. In: Symbols, embodiment, and meaning, ed. De Vega, M., Glenberg, A. M. & Graesser, A. C., pp. 245–83. Oxford University Press.
Cohen Kadosh, R. (2008a) Numerical representation: Abstract or non-abstract? Quarterly Journal of Experimental Psychology 61(8):1160–68.
Fischer, M. H. (2008) Finger counting habits modulate spatial-numerical associations. Cortex 44(4):386–92.
Fischer, M. H. & Zwaan, R. A. (2008) Embodied language: A review of the role of motor system in language comprehension. The Quarterly Journal of Experimental Psychology 61(6):825–50.
Ganor-Stern, D. & Tzelgov, J. (2008) Across-notation automatic numerical processing. Journal of Experimental Psychology: Learning, Memory and Cognition 34(2):430–37.
Glenberg, A.-M. & Kaschak, M.-P. (2002) Grounding language in action. Psychonomic Bulletin and Review 9(3):558–65.
Ito, Y. & Hatta, T. (2003) Semantic processing of Arabic, Kanji, and Kana numbers: Evidence from interference in physical and numerical size judgments. Memory and Cognition 31(3):360–68.
Lindemann, O., Abolafia, J. M., Girardi, G. & Bekkering, H. (2007) Getting a grip on numbers: Numerical magnitude priming in object grasping. Journal of Experimental Psychology: Human Perception and Performance 33(6):1400–09.
Lindemann, O., Stenneken, P., van, Schie, H, T. & Bekkering, H. (2006) Semantic activation in action planning. Journal of Experimental Psychology: Human Perception and Performance 32(3):633–43.
Mahon, B. Z. & Caramazza, A. (2008) A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. Journal of Physiology – Paris 102:5970.
Rueschemeyer, S.-A., Lindemann, O., van Elk, M. & Bekkering, H. (in press a) Embodied cognition: The interplay between automatic resonance and selection-for-action mechanisms. European Journal of Social Psychology.
Rueschemeyer, S.-A., Rooij, D. V., Lindemann, O., Willems, R. & Bekkering, H. (in press b). The function of words: Distinct neural correlates for words denoting differently manipulable objects. Journal of Cognitive Neuroscience.
Walsh, V. (2003) A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences 7(11):483–88.
Zwaan, R. A. & Taylor, L. J. (2006) Seeing, acting, understanding: Motor resonance in language comprehension. Journal of Experimental Psychology: General 135(1):111.

Symbols in numbers: From numerals to magnitude information

  • Oliver Lindemann (a1), Shirley-Ann Rueschemeyer (a1) and Harold Bekkering (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.