Skip to main content Accessibility help

Using big data to predict collective behavior in the real world 1

  • Helen Susannah Moat (a1) (a2), Tobias Preis (a2), Christopher Y. Olivola (a3), Chengwei Liu (a2) and Nick Chater (a2)...


Recent studies provide convincing evidence that data on online information gathering, alongside massive real-world datasets, can give new insights into real-world collective decision making and can even anticipate future actions. We argue that Bentley et al.’s timely account should consider the full breadth, and, above all, the predictive power of big data.



Hide All

Disclaimer: The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of IARPA, DoI/NBC, or the U.S. Government.



Hide All
Askitas, N. & Zimmermann, K. F. (2009) Google econometrics and unemployment forecasting. Applied Economics Quarterly 55:107–20.
Balcan, D., Colizza, V., Gonçalves, B., Hu, H., Ramasco, J. J. & Vespignani, A. (2009) Multiscale mobility networks and the spatial spreading of infectious diseases. Proceedings of the National Academy of Sciences USA 106:21484–89.
Bowers, K. J., Johnson, S. & Pease, K. (2004) Prospective hotspotting: The future of crime mapping? British Journal of Criminology 44:641–58.
Brownstein, J. S., Freifeld, C. C. & Madoff, L. C. (2009) Digital disease detection – harnessing the web for public health surveillance. New England Journal of Medicine 360:2153–57.
Choi, H. & Varian, H. (2012) Predicting the present with Google Trends. Economic Record 88 (Suppl. s1):29.
Ettredge, M., Gerdes, J. & Karuga, G. (2005) Using web-based search data to predict macroeconomic statistics. Communications of the ACM 48:8792.
Giguère, G. & Love, B. C. (2013) Limits in decision making arise from limits in memory retrieval. Proceedings of the National Academy of Sciences USA 110:7613–18.
Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S. & Brilliant, L. (2009) Detecting influenza epidemics using search engine query data. Nature 457(7232):1012–14.
Goel, S., Hofman, J. M., Lahaie, S., Pennock, D. M. & Watts, D. J. (2010) Predicting consumer behavior with web search. Proceedings of the National Academy of Sciences USA 107:17486–90.
Johnson, S. D., Birks, D. J., McLaughlin, L, Bowers, K. J. & Pease, K. (2007) Prospective crime mapping in operational context: Final report. Home Office, London.
Johnson, S. D. & Bowers, K. J. (2004) The burglary as clue to the future: The beginnings of prospective hot-spotting. European Journal of Criminology 1:237–55.
King, G. (2011) Ensuring the data-rich future of the social sciences. Science 331:719–21.
Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A.-L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., Jebara, T., King, G., Macy, M., Roy, D. & Van Alstyne, M. (2009) Computational social science. Science 323:721–23.
Mitchell, T. M. (2009) Mining our reality. Science 326:1644–45.
Moat, H. S., Curme, C., Avakian, A., Kenett, D. Y., Stanley, H. E. & Preis, T. (2013) Quantifying Wikipedia usage patterns before stock market moves. Scientific Reports 3:1801.
Mohler, G. O., Short, M. B., Brantingham, P. J., Schoenberg, F. P. & Tita, G. E. (2011) Self-exciting point process modeling of crime. Journal of the American Statistical Association 106:100–08.
Olivola, C. Y. & Sagara, N. (2009) Distributions of observed death tolls govern sensitivity to human fatalities. Proceedings of the National Academy of Sciences USA 106:22151–156.
Preis, T., Moat, H. S. & Stanley, H. E. (2013) Quantifying trading behavior in financial markets using Google Trends. Nature Scientific Reports 3, No. 1684, pp. 16.
Preis, T., Moat, H. S., Stanley, H. E. & Bishop, S. R. (2012) Quantifying the advantage of looking forward. Nature Scientific Reports 2, No. 350.
Preis, T., Reith, D. & Stanley, H. E. (2010) Complex dynamics of our economic life on different scales: Insights from search engine query data. Philosophical Transactions of the Royal Society A 368:5707–19.
Simon, H. A. (1955) A behavioral model of rational choice. Quarterly Journal of Economics 69:99118.
Stewart, N. (2009) Decision by sampling: The role of the decision environment in risky choice. Quarterly Journal of Experimental Psychology 62:1041–62.
Stewart, N., Chater, N. & Brown, G. D. A. (2006) Decision by sampling. Cognitive Psychology 53:126.
Tizzoni, M., Bajardi, P., Poletto, C., Ramasco, J. J., Balcan, D., Gonçalves, B., Perra, N., Colizza, V. & Vespignani, A. (2012) Real-time numerical forecast of global epidemic spreading: Case study of 2009 A/H1N1pdm. BMC Medicine 10:165.
Vespignani, A. (2009) Predicting the behavior of techno-social systems. Science 325:425–28.

Related content

Powered by UNSILO

Using big data to predict collective behavior in the real world 1

  • Helen Susannah Moat (a1) (a2), Tobias Preis (a2), Christopher Y. Olivola (a3), Chengwei Liu (a2) and Nick Chater (a2)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.