Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-qdp55 Total loading time: 0.42 Render date: 2021-11-30T11:04:10.427Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Bilingualism and cognition

Published online by Cambridge University Press:  27 November 2014

VIRGINIA VALIAN*
Affiliation:
Hunter College and CUNY Graduate Center

Abstract

The relation between bilingualism and cognition is informative about the connection between language and mind. From the perspective of language, the question is how bilingualism might help or hinder cognition – narrowly interpreted here as executive function. From the perspective of higher cognition, the question is what kinds of experiences improve executive function. Reported cognitive benefits from bilingualism range from none to substantial as a function of age, type of bilingualism (e.g., life-long balanced vs later-onset or infrequent use of the other language), syntactic relation between the two languages, socio-economic and immigrant status, task, and laboratory. To understand the variability and inconsistencies in results with bilingualism, I analyze concepts of executive function and cognitive reserve and examine the range of factors (such as active video game playing, education, musical training, and aerobic exercise) that are known to correlate with or to improve executive function. I suggest that a) “executive function” is a complex set of cognitive processes, the components of which are sometimes minimally correlated with each other, depending on the task; b) bilingualism is inconsistently correlated with superior executive function and delayed onset of dementia; c) all speakers (mono- or bilingual) have non-linguistic ways of improving executive function; and d) benefits from bilingualism – and all cognitively challenging activities – are inconsistent because individuals vary in the number and kinds of experiences they have that promote superior executive function.

Type
Keynote Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abutalebi, J. (2008). Neural aspects of second language representation and language control. Acta Psychologica, 128 (3), 466478.Google Scholar
Abutalebi, J., & Green, D. (2007). Bilingual language production: The neurocognition of language representation and control. Journal of Neurolinguistics, 20 (3), 242275.Google Scholar
Abutalebi, J., & Green, D. W. (2008). Control mechanisms in bilingual language production: Neural evidence from language switching studies. Language and Cognitive Processes, 23 (4), 557582.Google Scholar
Adesope, O. O., Lavin, T., Thompson, T., & Ungerleider, C. (2010). A systematic review and meta-analysis of the cognitive correlates of bilingualism. Review of Educational Research, 80 (2), 207245.Google Scholar
Alladi, S., Bak, T. H., Duggirala, V., Surampudi, B., Shailaja, M., Shukla, A. K., Chaudhuri, J. R., & Kaul, S. (2013). Bilingualism delays age at onset of dementia, independent of education and immigration status. Neurology, 81 (22), 19381944.Google Scholar
Amer, T., Kalender, B., Hasher, L., Trehub, S. E., & Wong, Y. (2013). Do older professional musicians have cognitive advantages?. PloS one, 8 (8), e71630.Google Scholar
Amieva, H., Mokri, H., Le Goff, M., Meillon, C., Jacqmin-Gadda, H., Foubert-Samier, A., Orgogozo, J.-M., Stern, Y., & Dartigues, J. F. (2014). Compensatory mechanisms in higher-educated subjects with Alzheimer's disease: a study of 20 years of cognitive decline. Brain, 137, 11671175.Google Scholar
Anderson-Hanley, C., Arciero, P. J., Brickman, A. M., Nimon, J. P., Okuma, N., Westen, S. C., Merz, M. E., Pence, B. D., Woods, J. A., Kramer, A. F., & Zimmerman, E. A. (2012). Exergaming and older adult cognition: a cluster randomized clinical trial. American Journal of Preventive Medicine, 42 (2), 109119.Google Scholar
Anguera, J. A., Boccanfuso, J., Rintoul, J. L., Al-Hashimi, O., Faraji, F., Janowich, J., Kong, E., Larraburo, Y., Rolle, C., Johnston, E., & Gazzaley, A. (2013). Video game training enhances cognitive control in older adults. Nature, 501 (7465), 97101.Google Scholar
Antón, E., Duñabeitia, J. A., Estévez, A., Hernández, J. A., Castillo, A., Fuentes, L. J., Davidson, D. J., & Carreiras, M. (2014). Is there a bilingual advantage in the ANT task? Evidence from children. Frontiers in Psychology, 5, Article 398, 12 pages.Google Scholar
Bailey, K., West, R., & Anderson, C. A. (2010). A negative association between video game experience and proactive cognitive control. Psychophysiology, 47 (1), 3442.Google Scholar
Barrett, K. C., Ashley, R., Strait, D. L., & Kraus, N. (2013). Art and science: how musical training shapes the brain. Frontiers in Psychology, 4, Article 713, 13 pages.Google Scholar
Bavelier, D., Green, C. S., Pouget, A., & Schrater, P. (2012). Brain plasticity through the life span: Learning to learn and action video games. Annual Review of Neuroscience, 35, 391416.Google Scholar
Best, J. R. (2010). Effects of physical activity on children's executive function: Contributions of experimental research on aerobic exercise. Developmental Review, 30 (4), 331351.Google Scholar
Best, J. R. (2012). Exergaming immediately enhances children's executive function. Developmental Psychology, 48 (5), 15011510.Google Scholar
Bialystok, E. (1999). Cognitive complexity and attentional control in the bilingual mind. Child Development, 70, 636644.Google Scholar
Bialystok, E. (2006). Effect of bilingualism and computer video game experience on the Simon task. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 60 (1), 6879.Google Scholar
Bialystok, E. (2010). Global–local and trail-making tasks by monolingual and bilingual children: Beyond inhibition. Developmental Psychology, 46 (1), 93105.Google Scholar
Bialystok, E. (2011). Reshaping the mind: the benefits of bilingualism. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 65 (4), 229235.Google Scholar
Bialystok, E., Barac, R., Blaye, A., & Poulin–Dubois, D. (2010). Word mapping and executive functioning in young monolingual and bilingual children. Journal of Cognition and Development, 11 (4), 485508.Google Scholar
Bialystok, E., Craik, F. I. M., Binns, M. A., Ossher, L., & Freedman, M. (2014). Effects of bilingualism on the age of onset and progression of MCI and AD: Evidence from executive function tests. Neuropsychology, 28 (2), 290304.Google Scholar
Bialystok, E., Craik, F. I., & Freedman, M. (2007). Bilingualism as a protection against the onset of symptoms of dementia. Neuropsychologia, 45 (2), 459464.Google Scholar
Bialystok, E., Craik, F. I., Klein, R., & Viswanathan, M. (2004). Bilingualism, aging, and cognitive control: evidence from the Simon task. Psychology and Aging, 19 (2), 290.Google Scholar
Bialystok, E., Craik, F., & Luk, G. (2008). Cognitive control and lexical access in younger and older bilinguals. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34 (4), 859.Google Scholar
Bialystok, E., Craik, F. I., & Luk, G. (2012). Bilingualism: Consequences for mind and brain. Trends in Cognitive Sciences, 16 (4), 240250.Google Scholar
Bialystok, E., & DePape, A. M. (2009). Musical expertise, bilingualism, and executive functioning. Journal of Experimental Psychology: Human Perception and Performance, 35 (2), 565574.Google Scholar
Bisoglio, J., Michaels, T. I., Mervis, J. E., & Ashinoff, B. K. (2014). Cognitive enhancement through action video game training: great expectations require greater evidence. Frontiers in Psychology, 5, Article 136, 6 pages.Google Scholar
Bixby, W. R., Spalding, T. W., Haufler, A. J., Deeny, S. P., Mahlow, P. T., Zimmerman, J. B., & Hatfield, B. D. (2007). The unique relation of physical activity to executive function in older men and women. Medicine and Science in Sports and Exercise, 39 (8), 14081416.Google Scholar
Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., & Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychologica, 129 (3), 387398.Google Scholar
Brown, C. L., Gibbons, L. E., Kennison, R. F., Robitaille, A., Lindwall, M., Mitchell, M. B., Shirk, S. D., Atri, A., Cimino, C. R., Benitez, A., MacDonald, S. W. S., Zelinski, E. M., Willis, S. L., Schaie, K. W., Johansson, B., Dixon, R. A., Mungas, D. M., Hofer, S. M., & Piccinin, A. M. (2012). Social activity and cognitive functioning over time: A coordinated analysis of four longitudinal studies. Journal of Aging Research, 2012, 112.Google Scholar
Bugos, J. A., Perlstein, W. M., McCrae, C. S., Brophy, T. S., & Bedenbaugh, P. H. (2007). Individualized piano instruction enhances executive functioning and working memory in older adults. Aging and Mental Health, 11 (4), 464471.Google Scholar
Burgess, P. W. (1997). Theory and methodology in executive function research. In Rabbitt, P. (Ed.), Methodology of frontal and executive function (pp. 81111). Hove, UK: Psychology Press.Google Scholar
Calabria, M., Branzi, F. M., Marne, P., Hernández, M., & Costa, A. (in press). Age-related effects over bilingual language control and executive control. Bilingualism: Language and Cognition.Google Scholar
Calabria, M., Hernández, M., Branzi, F. M., & Costa, A. (2011). Qualitative differences between bilingual language control and executive control: Evidence from task-switching. Frontiers in Psychology, 2, Article 399, 10 pages.Google Scholar
Calvo, A., & Bialystok, E. (2014). Independent effects of bilingualism and socioeconomic status on language ability and executive functioning. Cognition, 130 (3), 278288.Google Scholar
Carter, E. C., & McCullough, M. E. (2013). Is ego depletion too incredible? Evidence for the overestimation of the depletion effect. Behavioral and Brain Sciences, 36 (06), 683684.Google Scholar
Chang, Y. (2014). Reorganization and plastic changes of the human brain associated with skill learning and expertise. Frontiers in Human Neuroscience, 8, Article 35, 7 pages.Google Scholar
Chertkow, H., Whitehead, V., Phillips, N., Wolfson, C., Atherton, J., & Bergman, H. (2010). Bilingualism (but not always bilingualism) delays the onset of Alzheimer disease: evidence from a bilingual community. Alzheimer Disease & Associated Disorders, 24 (2), 118125.Google Scholar
Colcombe, S., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults a meta-analytic study. Psychological Science, 14 (2), 125130.Google Scholar
Costa, A., Hernández, M., Costa-Faidella, J., & Sebastián-Gallés, N. (2009). On the bilingual advantage in conflict processing: Now you see it, now you don’t. Cognition, 113 (2), 135149.Google Scholar
Costa, A., & Sebastián-Gallés, N. (2014). How does the bilingual experience sculpt the brain? Nature Reviews Neuroscience, 15 (5), 336345.Google Scholar
Craik, F. I. (2006). Brain-behavior relations across the lifespan: A commentary. Neuroscience & Biobehavioral Reviews, 30 (6), 885892.Google Scholar
Craik, F. I., Bialystok, E. & Freedman, M. (2010). Delaying the onset of Alzheimer disease Bilingualism as a form of cognitive reserve. Neurology, 75 (19), 17261729.Google Scholar
Crane, P. K., Gibbons, L. E., Arani, K., Nguyen, V., Rhoads, K., McCurry, S. M., Launer, L., Masaki, K., & White, L. (2009). Midlife use of written Japanese and protection from late life dementia. Epidemiology, 20 (5), 766774.Google Scholar
Crane, P. K., Gruhl, J. C., Erosheva, E. A., Gibbons, L. E., McCurry, S. M., Rhoads, K., Nguyen, V., Arani, K., Masaki, K. & White, L. (2010). Use of spoken and written Japanese did not protect Japanese–American men from cognitive decline in late life. Journal of Gerontology: Psychological Sciences, 65B (6), 654666.Google Scholar
Cumming, G. (2014). The new statistics: Why and how. Psychological Science, 25 (1), 729.Google Scholar
De Vries, G. J. (2004). Minireview: Sex differences in adult and developing brains: compensation, compensation, compensation. Endocrinology, 145, 10631068.Google Scholar
Diamond, A. (2012). Activities and programs that improve children's executive functions. Current Directions in Psychological Science, 21 (5), 335341.Google Scholar
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135168.Google Scholar
Diamond, A. & Lee, K. (2011). Interventions shown to aid executive function development in children 4 to 12 years old. Science, 333, 959964.Google Scholar
Driscoll, I. & Troncoso, J. (2011). Asymptomatic Alzheimer's disease: a prodrome or a state of resilience? Current Alzheimer Research, 8 (4), 330335.Google Scholar
Duñabeitia, J. A., Hernández, J. A., Antón, E., Macizo, P., Estévez, A., Fuentes, L. J. & Carreiras, M. (2014). The inhibitory advantage in bilingual children revisited: Myth or reality? Experimental Psychology (formerly Zeitschrift für Experimentelle Psychologie), 61 (3), 234251.Google Scholar
Dye, M. W. G., Green, C. S. & Bavelier, D. (2009). The development of attention skills in action video game players. Neuropsychologia, 47 (8), 17801789.Google Scholar
Eliot, L. (2011). The trouble with sex differences. Neuron, 72 (6), 895898.Google Scholar
Engle, R. W. (2002). Working memory capacity as executive attention. Current Directions in Psychological Science, 11 (1), 1923.Google Scholar
Erickson, K. I., Miller, D. L., Weinstein, A. M., Akl, S. L. & Banducci, S. E. (2012). Physical activity and brain plasticity in late adulthood: A conceptual review. Ageing Research, 4 (6), 3447.Google Scholar
Fine, C. (2010). Delusions of gender: How our minds, society, and neurosexism create difference. New York, NY: W.W. Norton & Company.Google Scholar
Fozard, J. L., Vercruyssen, M., Reynolds, S. L., Hancock, P. A. & Quilter, R. E. (1994). Age differences and changes in reaction time: The Baltimore Longitudinal Study of Aging. Journal of Gerontology, 49 (4), 179189.Google Scholar
Freedman, M., Alladi, S., Chertkow, H., Bialystok, E., Craik, F. I. M., Phillips, N. A., Duggirala, V., Raju, S. B., & Bak, T. H. (2014). Delaying onset of dementia: Are two languages enough? Behavioural Neurology, 2014, 8 pages.Google Scholar
Friedman, N. P., Miyake, A., Young, S. E., DeFries, J. C., Corley, R. P. & Hewitt, J. K. (2008). Individual differences in executive functions are almost entirely genetic in origin. Journal of Experimental Psychology: General, 137 (2), 201225.Google Scholar
Funder, D. C., Levine, J. M., Mackie, D. M., Morf, C. C., Vazire, S. & West, S. G. (2013). Improving the dependability of research in personality and social psychology: Recommendations for research and educational practice. Personality and Social Psychology Review, 39 (6), 803813).Google Scholar
Gathercole, V. C., Thomas, E. M., Kennedy, I., Prys, C., Young, N., Viñas Guasch, N., Roberts, E. J., Hughes, E. K., & Jones, L. (2014). Does language dominance affect cognitive performance in Bilinguals? Lifespan evidence from preschoolers through older adults on card sorting, Simon, and metalinguistic tasks. Frontiers in Psychology, 5, Article 11, 14 pages.Google Scholar
Gold, B. T., Kim, C., Johnson, N. F., Kryscio, R. J. & Smith, C. D. (2013). Lifelong bilingualism maintains neural efficiency for cognitive control in aging. Journal of Neuroscience, 33 (2), 387396.Google Scholar
Goldbourt, U., Schnaider-Beeri, M. & Davidson, M. (2007). Socioeconomic status in relationship to death of vascular disease and late-life dementia. Journal of the Neurological Sciences, 257 (1), 177181.Google Scholar
Gollan, T. H., Salmon, D. P., Montoya, R. I. & Galasko, D. R. (2011). Degree of bilingualism predicts age of diagnosis of Alzheimer's disease in low-education but not in highly educated Hispanics. Neuropsychologia, 49 (14), 38263830.Google Scholar
Green, D. W. (1998). Mental control of the bilingual lexico-semantic system. Bilingualism: Language and Cognition, 1, 6781.Google Scholar
Green, C. S., Li, R. & Bavelier, D. (2010). Perceptual learning during action video game playing. Topics in Cognitive Science, 2, 202216.Google Scholar
Green, S. C., Sugarman, M. A., Medford, K., Klobusicky, E. & Bavelier, D. (2012). The effect of action video game experience on task-switching. Computers in Human Behavior, 28 (3), 984994.Google Scholar
Guiney, H. & Machado, L. (2013). Benefits of regular aerobic exercise for executive functioning in healthy populations. Psychonomic Bulletin & Review, 20 (1), 7386.Google Scholar
Hanna-Pladdy, B. & MacKay, A. (2011). The relation between instrumental musical activity and cognitive aging. Neuropsychology, 25 (3), 378386.Google Scholar
Hatzidaki, A., Branigan, H. P. & Pickering, M. J. (2011). Co-activation of syntax in bilingual language production. Cognitive Psychology, 62 (2), 123150.Google Scholar
Heidlmayr, K., Moutier, S., Hemforth, B., Tanzmeister, R. & Isel, F. (2014). Successive bilingualism and executive functions: The effect of second language use on inhibitory control in a behavioural Stroop Colour Word task. Bilingualism: Language and Cognition, 17 (03), 630645.Google Scholar
Hernández, M., Costa, A., Fuentes, L. J., Vivas, A. B. & Sebastián-Gallés, N. (2010). The impact of bilingualism on the executive control and orienting networks of attention. Bilingualism: Language and Cognition, 13 (3), 315325.Google Scholar
Hernández, M., Martin, C. D., Barceló, F. & Costa, A. (2013). Where is the bilingual advantage in task-switching? Journal of Memory and Language, 69 (3), 257276.Google Scholar
Hilchey, M. D. & Klein, R. M. (2011). Are there bilingual advantages on nonlinguistic interference tasks? Implications for the plasticity of executive control processes. Psychonomic Bulletin & Review, 18 (4), 625658.Google Scholar
Hofmann, W., Schmeichel, B. J., & Baddeley, A. D. (2012). Executive functions and self-regulation. Trends in Cognitive Sciences, 16 (3), 174180.Google Scholar
Hötting, K., & Röder, B. (2013). Beneficial effects of physical exercise on neuroplasticity and cognition. Neuroscience & Biobehavioral Reviews, 37 (9), 22432257.Google Scholar
Hsin, L., Legendre, G. & Omaki, A. (2013). Priming cross-linguistic interference in Spanish–English bilingual children. In Proceedings of the 37th Annual Boston University Conference on Language Development, pp. 165–77.Google Scholar
Humphrey, A. & Valian, V. (2012). Multi-lingualism and cognitive control: Simon and Flanker task performance in monolingual and multilingual young adults. Talk presented at the Psychonomic Society, Minneapolis, November.Google Scholar
James, B. D., Wilson, R. S., Barnes, L. L. & Bennett, D. A. (2011). Late-life social activity and cognitive decline in old age. Journal of the International Neuropsychological Society, 17 (6), 9981005.Google Scholar
Kavé, G., Eyal, N., Shorek, A. & Cohen-Mansfield, J. (2008). Multilingualism and cognitive state in the oldest old. Psychology and Aging, 23 (1), 7078.Google Scholar
Kirk, N. W., Scott-Brown, K. C. & Kempe, V. (2013). Do older Gaelic–English bilinguals show an advantage in inhibitory control? In Proceedings of the 35th Annual Conference of the Cognitive Science Society.Google Scholar
Kousaie, S. & Phillips, N. A. (2012). Ageing and bilingualism: Absence of a “bilingual advantage” in Stroop interference in a nonimmigrant sample. The Quarterly Journal of Experimental Psychology, 65 (2), 356369.Google Scholar
Kovács, Á. M. & Mehler, J. (2009). Cognitive gains in 7-month-old bilingual infants. Proceedings of the National Academy of Sciences, 106 (16), 65566560.Google Scholar
Kroll, J. F. & Bialystok, E. (2013). Understanding the consequences of bilingualism for language processing and cognition. Journal of Cognitive Psychology, (ahead-of-print), 1–18.Google Scholar
Kroll, J. F., Bobb, S. C., Misra, M. & Guo, T. (2008). Language selection in bilingual speech: Evidence for inhibitory processes. Acta Psychologica, 128 (3), 416430.Google Scholar
Kroll, J. F., Dussias, P. E., Bogulski, C. A. & Valdes Kroff, J. R. (2012). Juggling two languages in one mind: What bilinguals tell us about language processing and its consequences for cognition. Psychology of Learning and Motivation: Advances in Research and Theory, 56, 229262.Google Scholar
Lawson, G. M., Hook, C. J., Hackman, D. A. & Farah, M. J. (in press). Socioeconomic status and neurocognitive development: Executive function. In Griffin, J. A., Freund, L. S. & McCardle, P. (eds.), Executive function in preschool children: Integrating measurement, neurodevelopment, and translational research. Washington, DC: APA Press.Google Scholar
Ledgerwood, A. (2014). Introduction to the special section on advancing our methods and practices. Perspectives on Psychological Science, 9 (3), 275277.Google Scholar
Li, P., Legault, J. & Litcofsky, K. A. (2014). Neuroplasticity as a function of second language learning: Anatomical changes in the human brain. Cortex, 58, 301324.Google Scholar
Linck, J. A., Hoshino, N. & Kroll, J. F. (2008). Cross-language lexical processes and inhibitory control. The mental lexicon, 3 (3), 349.Google Scholar
Lövdén, M., Wenger, E., Mårtensson, J., Lindenberger, U. & Bäckman, L. (2013). Structural brain plasticity in adult learning and development. Neuroscience and Biobehavioral Reviews, 37 (9), 22962310.Google Scholar
Luk, G., De Sa, E. R. I. C. & Bialystok, E. (2011). Is there a relation between onset age of bilingualism and enhancement of cognitive control? Bilingualism: Language and Cognition, 14 (4), 588595.Google Scholar
Magezi, D. A., Khateb, A., Mouthon, M., Spierer, L. & Annoni, J. M. (2012). Cognitive control of language production in bilinguals involves a partly independent process within the domain-general cognitive control network: Evidence from task-switching and electrical brain activity. Brain and Language, 122 (1), 5563.Google Scholar
Marton, K., Campanelli, L., Eichorn, N., Scheuer, J. & Stepanoff, V. (2013). Proactive interference in monolingual and bilingual school-age children. Paper presented at the 9th meeting of the International Symposium on Bilingualism, Singapore.Google Scholar
Miyake, A. & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current Directions in Psychological Science, 21 (1), 814.Google Scholar
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A. & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49100.Google Scholar
Moreno, S., Bialystok, E., Barac, R., Schellenberg, E. G., Cepeda, N. J. & Chau, T. (2011). Short-term music training enhances verbal intelligence and executive function. Psychological science, 22 (11), 14251433.Google Scholar
Morey, R. D., Rouder, J. N., Verhagen, J. & Wagenmakers, E. J. (2014). Why hypothesis tests are essential for psychological science: A comment on Cumming (2014). Psychological Science, 25 (6), 12891290.Google Scholar
Morton, J. B. & Harper, S. N. (2007). What did Simon say? Revisiting the bilingual advantage. Developmental Science, 10 (6), 719726.Google Scholar
Nyberg, J., Åberg, M. A., Schiöler, L., Nilsson, M., Wallin, A., Torén, K. & Kuhn, H. G. (2014). Cardiovascular and cognitive fitness at age 18 and risk of early-onset dementia. Brain, 137, 15141523.Google Scholar
Nyberg, L., Lövdén, M., Riklund, K., Lindenberger, U. & Bäckman, L. (2012). Memory aging and brain maintenance. Trends in Cognitive Sciences, 16 (5), 292305.Google Scholar
O’Leary, K. C., Pontifex, M. B., Scudder, M. R., Brown, M. L. & Hillman, C. H. (2011). The effects of single bouts of aerobic exercise, exergaming, and videogame play on cognitive control. Clinical Neurophysiology, 122 (8), 15181525.Google Scholar
Paap, K. R. (2014). The role of componential analysis, categorical hypothesising, replicability and confirmation bias in testing for bilingual advantages in executive functioning. Journal of Cognitive Psychology, 26 (3), 242255.Google Scholar
Paap, K. R. & Greenberg, Z. I. (2013). There is no coherent evidence for a bilingual advantage in executive processing. Cognitive Psychology, 66 (2), 232258.Google Scholar
Pashler, H. & Harris, C. R. (2012). Is the replicability crisis overblown? Three arguments examined. Perspectives on Psychological Science, 7 (6), 531536.Google Scholar
Peal, E. & Lambert, W. E. (1962). The relation of bilingualism to intelligence. Psychological Monographs: General and Applied, 76 (27), 123.Google Scholar
Pelham, S. D. & Abrams, L. (2014). Cognitive advantages and disadvantages in early and late bilinguals. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40 (2), 313325.Google Scholar
Poarch, G. J., & Van Hell, J. G. (2012). Cross-language activation in children's speech production: Evidence from second language learners, bilinguals, and trilinguals. Journal of Experimental Child Psychology, 111 (3), 419438.Google Scholar
Poulin-Dubois, D., Blaye, A., Coutya, J. & Bialystok, E. (2011). The effects of bilingualism on toddlers’ executive functioning. Journal of Experimental Child Psychology, 108 (3), 567579.Google Scholar
Prior, A. & MacWhinney, B. (2010). A bilingual advantage in task switching. Bilingualism: Language and Cognition, 13 (2), 253262.Google Scholar
Ritter, S. M., Damian, R. I., Simonton, D. K., van Baaren, R. B., Strick, M., Derks, J. & Dijksterhuis, A. (2012). Diversifying experiences enhance cognitive flexibility. Journal of Experimental Social Psychology, 48 (4), 961964.Google Scholar
Runnqvist, E., Gollan, T. H., Costa, A. & Ferreira, V. S. (2013). A disadvantage in bilingual sentence production modulated by syntactic frequency and similarity across languages. Cognition, 129 (2), 256263.Google Scholar
Sanders, A. E., Hall, C. B., Katz, M. J. & Lipton, R. B. (2012). Non-native language use and risk of incident dementia in the elderly. Journal of Alzheimer's Disease, 29 (1), 99108.Google Scholar
Scarmeas, N., Levy, G., Tang, M. X., Manly, J. & Stern, Y. (2001). Influence of leisure activity on the incidence of Alzheimer's disease. Neurology, 57 (12), 22362242.Google Scholar
Schellenberg, E. G. (2005). Music and cognitive abilities. Current Directions in Psychological Science, 14 (6), 317320.Google Scholar
Schellenberg, E. G. & Weiss, M. W. (2013). Music and cognitive abilities. In Deutsch, D. (Ed.), The psychology of music (3rd edition), pp. 499550. London, UK: Academic Press.Google Scholar
Siedlecki, K. L., Stern, Y., Reuben, A., Sacco, R. L., Elkind, M. S. & Wright, C. B. (2009). Construct validity of cognitive reserve in a multiethnic cohort: The Northern Manhattan Study. Journal of the International Neuropsychological Society, 15 (4), 558569.Google Scholar
Simon, J. R. & Wolf, J. D. (1963). Choice reaction times as a function of angular stimulus-response correspondence and age. Ergonomics, 6, 99105.Google Scholar
Simons, D. J. (2014). The value of direct replication. Perspectives on Psychological Science, 9 (1), 7680.Google Scholar
Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8 (3), 448460.Google Scholar
Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47 (10), 20152028.Google Scholar
Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer's disease. The Lancet Neurology, 11 (11), 10061012.Google Scholar
Stern, Y., Gurland, B., Tatemichi, T.K., Tang, M.X., Wilder, D. & Mayeux, R. (1994). Influence of education and occupation on the incidence of Alzheimer's disease. Journal of the American Medical Association, 271, 10041010.Google Scholar
Strobach, T., Frensch, P. A. & Schubert, T. (2012). Video game practice optimizes executive control skills in dual-task and task switching situations. Acta Psychologica, 140 (1), 1324.Google Scholar
Stroebe, W. & Strack, F. (2014). The alleged crisis and the illusion of exact replication. Perspectives on Psychological Science, 9 (1), 5971.Google Scholar
Tao, L., Marzecová, A., Taft, M., Asanowicz, D. & Wodniecka, Z. (2011). The efficiency of attentional networks in early and late bilinguals: the role of age of acquisition. Frontiers in Psychology, 2, Article 123, 19 pages.Google Scholar
Terracciano, A., Iacono, D., O’Brien, R. J., Troncoso, J. C., An, Y., Sutin, A. R., Ferrucci, L, Zonderman, A. B., & Resnick, S. M. (2013). Personality and resilience to Alzheimer's disease neuropathology: a prospective autopsy study. Neurobiology of Aging, 34 (4), 10451050.Google Scholar
Thomas, C. & Baker, C. I. (2013). Teaching an adult brain new tricks: a critical review of evidence for training-dependent structural plasticity in humans. NeuroImage, 73, 225236.Google Scholar
Tucker, A. M. & Stern, Y. (2011). Cognitive reserve in aging. Current Alzheimer Research, 8 (4), 354360.Google Scholar
Turner, G. R. & Spreng, R. N. (2012). Executive functions and neurocognitive aging: dissociable patterns of brain activity. Neurobiology of Aging, 33 (4), 826.e1–826.e13.Google Scholar
Yang, S., Yang, H. & Lust, B. (2011). Early childhood bilingualism leads to advances in executive attention: Dissociating culture and language. Bilingualism: Language and Cognition, 14 (3), 412422.Google Scholar
Yeung, C. M., St. John, P. D., Menec, V. & Tyas, S. L. (in press). Is bilingualism associated with a lower risk of dementia in community-living older adults? Cross-sectional and prospective analyses. Alzheimer Disease and Associated Disorders.Google Scholar
Yudes, C., Macizo, P. & Bajo, T. (2011). The influence of expertise in simultaneous interpreting on non-verbal executive processes. Frontiers in Psychology, 2, Article 309, 9 pages.Google Scholar
Weissberger, G. H., Wierenga, C. E., Bondi, M. W. & Gollan, T. H. (2012). Partially overlapping mechanisms of language and task control in young and older bilinguals. Psychology and Aging, 27 (4), 959.Google Scholar
Zacks, R. T. & Hasher, L. (1994). Directed ignoring: Inhibitory regulation of working memory. In Dagenbach, D. & Carr, T. H. (eds.), Inhibitory mechanisms in attention, memory, and language, pp. 241264. San Diego, CA: Academic Press.Google Scholar
Zahodne, L. B., Schofield, P. W., Farrell, M. T., Stern, Y. & Manly, J. J. (2014). Bilingualism does not alter cognitive decline or dementia risk among Spanish-speaking immigrants. Neuropsychology, 28, 238246.Google Scholar
Zahodne, L. B., Glymour, M. M., Sparks, C., Bontempo, D., Dixon, R. A., MacDonald, S. W. & Manly, J. J. (2011). Education does not slow cognitive decline with aging: 12-year evidence from the Victoria Longitudinal Study. Journal of the International Neuropsychological Society, 17 (6), 10391046.Google Scholar
Supplementary material: File

Valian Supplementary Material

Appendix

Download Valian Supplementary Material(File)
File 49 KB
227
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Bilingualism and cognition
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Bilingualism and cognition
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Bilingualism and cognition
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *