Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-ns2hh Total loading time: 1.289 Render date: 2022-10-03T16:08:25.729Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": true, "useSa": true } hasContentIssue true

Prediction and integration in native and second-language processing of elliptical structures*

Published online by Cambridge University Press:  29 December 2014

EDITH KAAN*
Affiliation:
Department of Linguistics, University of Florida
JOSEPH KIRKHAM
Affiliation:
Department of Linguistics, University of Florida
FRANK WIJNEN
Affiliation:
Utrecht Institute of Linguistics OTS, Utrecht University
*
Address for correspondence: Edith Kaan Department of LinguisticsUniversity of FloridaBox 115454 Gainesville, FL 32611kaan@ufl.edu

Abstract

According to recent views of L2-sentence processing, L2-speakers do not predict upcoming information to the same extent as do native speakers. To investigate L2-speakers’ predictive use and integration of syntactic information across clauses, we recorded event-related potentials (ERPs) from advanced L2-learners and native speakers while they read sentences in which the syntactic context did or did not allow noun-ellipsis (Lau, E., Stroud, C., Plesch, S., & Phillips, C. (2006). The role of structural prediction in rapid syntactic analysis. Brain and Language, 98, 74–88.) Both native and L2-speakers were sensitive to the context when integrating words after the potential ellipsis-site. However, native, but not L2-speakers, anticipated the ellipsis, as suggested by an ERP difference between elliptical and non-elliptical contexts preceding the potential ellipsis-site. In addition, L2-learners displayed a late frontal negativity for ungrammaticalities, suggesting differences in repair strategies or resources compared with native speakers.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

The authors would like to thank Natalia Davidson, Chelsea Guerra, Kyriaki Neophytou and Marpessa Rietbergen for their help making materials and running participants, Ellen Lau for letting us use her stimuli, and Iris Mulders and Sjef Pieters for technical assistance at the Utrecht site. This research was funded in part by the National Science Foundation (NSF 0957178), and a visiting scholars grant from the Netherlands Organisation for Scientific Research (NWO 040.11.367) awarded to the first author.

References

Alemán Bañón, J., Fiorentino, R., & Gabriele, A. (2012). The processing of number and gender agreement in Spanish: An event-related potential investigation of the effects of structural distance. Brain Research, 1456, 4963.CrossRefGoogle ScholarPubMed
Chambers, C. G., & Cooke, H. (2009). Lexical competition during second-language listening: Sentence context, but not proficiency, constrains interference from the native lexicon. Journal of Experimental Psychology: Learning, Memory and Cognition, 35, 10291040.Google Scholar
Clahsen, H., & Felser, C. (2006). Grammatical processing in language learners. Applied Psycholinguistics, 27, 342.CrossRefGoogle Scholar
Corver, N., & van Koppen, M. (2010). Ellipsis in Dutch possessive noun phrases: a micro-comparative approach. Journal of Comparative Germanic Linguistics, 13, 99140.CrossRefGoogle Scholar
Coulson, S., King, J. W., & Kutas, M. (1998). Expect the unexpected: Event-related brain response to morphosyntactic violations. Language & Cognitive Processes, 13, 2158.CrossRefGoogle Scholar
DeLong, K. A., Urbach, T. P., & Kutas, M. (2005). Probabilistic word pre-activation during language comprehension inferred from electrical brain activity. Nature Neuroscience, 8, 11171121.CrossRefGoogle ScholarPubMed
Dikker, S., Rabagliati, H., Farmer, T. A., & Pylkkänen, L. (2010). Early occipital sensitivity to syntactic category is based on form typicality. Psychological Science, 21, 629634.CrossRefGoogle ScholarPubMed
Dikker, S., Rabagliati, H., & Pylkkänen, L. (2009). Sensitivity to syntax in visual cortex. Cognition, 110, 293321.CrossRefGoogle ScholarPubMed
Dimitrova, D. V. (2012). Neural correlates of prosody and information structure. Unpublished PhD, Rijksuniversiteit Groningen, Groningen.Google Scholar
Dussias, P. E., Valdés Kroff, J. R., Guzzardo Tamargo, R. E., & Gerfen, C. (2013). When gender and looking go hand in hand. Grammatical gender processing in L2 Spanish. Studies in Second Language Acquisition, 35, 353387.CrossRefGoogle Scholar
Foucart, A., Martin, C. D., Moreno, E. M., & Costa, A. (2014). Can bilinguals see it coming? Word anticipation in L2 sentence reading. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 14611469.Google ScholarPubMed
Friederici, A. D., & Frisch, S. (2000). Verb argument structure processing: The role of verb-specific and argument-specific information. Journal of Memory and Language, 43, 476507.CrossRefGoogle Scholar
Friederici, A. D., Hahne, A., & Saddy, D. (2002). Distinct neurophysiological patterns reflecting aspects of syntactic complexity and syntactic repair. Journal of Psycholinguistic Research, 31, 4563.CrossRefGoogle ScholarPubMed
Frisch, S., Hahne, A., & Friederici, A. D. (2004). Word category and verb-argument structure information in the dynamics of parsing. Cognition, 91, 191219.CrossRefGoogle ScholarPubMed
Gillon Dowens, M., Vergara, M., Barber, H. A., & Carreiras, M. (2010). Morphosyntactic processing in late second-language learners. Journal of Cognitive Neuroscience, 22, 18701887.CrossRefGoogle Scholar
Greenhouse, S. W., & Geisser, S. (1959). On methods in the analysis of profile data. Psychometrika, 24, 95112.CrossRefGoogle Scholar
Grüter, T., Lew-Williams, C., & Fernald, A. (2012). Grammatical gender in L2: A production or a real-time processing problem? Second Language Research, 28, 191215.CrossRefGoogle Scholar
Grüter, T., & Rohde, H. (2013). L2 processing is affected by RAGE: Evidence from reference resolution. Paper presented at the the 12th conference on Generative Approaches to Second Language Acquisition (GASLA)Google Scholar
Hahne, A., & Friederici, A. D. (2001). Processing a second language: late learners’ comprehension mechanisms as revealed by event-related brain potentials. Bilingualism: Language and Cognition, 4, 123141.CrossRefGoogle Scholar
Hahne, A., & Friederici, A. D. (2002). Differential task effects on semantic and syntactic processes as revealed by ERPs. Cognitive Brain Research, 13, 339356.CrossRefGoogle ScholarPubMed
Hopp, H. (2009). The syntax-discourse interface in near-native L2 acquisition: Off-line and on-line performance. Bilingualism: Language and Cognition, 12, 463483.CrossRefGoogle Scholar
Hopp, H. (2013). Grammatical gender in adult L2 acquisition: Relations between lexical and syntactic variability. Second Language Research, 29, 3356.CrossRefGoogle Scholar
Isel, F. (2007). Syntactic and referential processes in second-language learners: Event-related brain potential evidence. Neuroreport, 18, 18851889.CrossRefGoogle ScholarPubMed
Kaan, E. (2014). Predictive sentence processing in L2 and L1: What is different? Linguistic Approaches to Bilingualism, 4, 257282.CrossRefGoogle Scholar
Kaan, E., Dallas, A. C., & Wijnen, F. (2010). Syntactic predictions in second-language sentence processing. In Zwart, J.-W. & de Vries, M. (eds.), Structure preserved. Festschrift in the honor of Jan Koster (pp. 207213). Amsterdam: John Benjamins.CrossRefGoogle Scholar
Kaan, E., Harris, A., Gibson, E., & Holcomb, P. (2000). The P600 as an index of syntactic integration difficulty. Language and Cognitive Processes, 15, 159201.CrossRefGoogle Scholar
Kaan, E., Overfelt, C., Tromp, D., & Wijnen, F. (2013). Processing gapped verbs. Journal of Psycholinguistic Research, 42, 307338.CrossRefGoogle ScholarPubMed
Kaan, E., & Swaab, T. Y. (2003). Electrophysiological evidence for serial sentence processing: a comparison between non-preferred and ungrammatical continuations. Brain Research. Cognitive Brain Research, 17, 621635.CrossRefGoogle ScholarPubMed
Keijzer, M. (2007). Last in, first out? An investigation of the regression hypothesis in Dutch emigrants in anglophone Canada. Unpublished Ph.D., Free University of Amsterdam.Google Scholar
Kutas, M., & Hillyard, S. A. (1980). Reading senseless sentences: Brain potentials reflect semantic incongruity. Science, 207, 203206.CrossRefGoogle ScholarPubMed
Lau, E., Stroud, C., Plesch, S., & Phillips, C. (2006). The role of structural prediction in rapid syntactic analysis. Brain and Language, 98, 7488.CrossRefGoogle ScholarPubMed
Lemhöfer, K., & Broersma, M. (2012). Introducing LexTALE: A quick and valid lexical test for advanced learners of English. Behavioral Research, 44, 325343.CrossRefGoogle ScholarPubMed
Lew-Williams, C., & Fernald, A. (2010). Real-time processing of gender-marked articles by native and non-native Spanish speakers. Journal of Memory and Language, 63, 447464.CrossRefGoogle ScholarPubMed
Marian, V., Blumenfield, H. K., & Kaushanskaya, M. (2007). The language experience and proficiency questionnaire (LEAP-Q): Assessing language profiles in bilinguals and multi-linguals. Journal of Speech and Hearing Research, 50, 940967.CrossRefGoogle Scholar
Martin, C., Thierry, G., Kuipers, J.-R., Boutonnet, B., Foucart, A., & Costa, A. (2013). Bilinguals reading in their second language do not predict upcoming words as native readers do. Journal of Memory and Language, 69, 574588.CrossRefGoogle Scholar
Morgan-Short, K., Steinhauer, K., Sanz, C., & Ullman, M. T. (2012). Explicit and implicit second language training differentially affect the achievement of native-like brain activation patterns. Journal of Cognitive Neuroscience, 24, 933947.CrossRefGoogle ScholarPubMed
Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97113.CrossRefGoogle ScholarPubMed
Osterhout, L., Holcomb, P. J., & Swinney, D. A. (1994). Brain potentials elicited by garden-path sentences: Evidence of the application of verb information during parsing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 786803.Google ScholarPubMed
Phillips, C., & Parker, D. (2014). The psycholinguistics of ellipsis. Lingua, 151, 7895.CrossRefGoogle Scholar
Ruchkin, D. S., Grafman, J., Cameron, K., & Berndt, R. S. (2003). Working memory retention systems: A state of activated long-term memory. Behavioral and Brain Sciences, 26, 709777.CrossRefGoogle ScholarPubMed
Sabourin, L., & Stowe, L. (2004). Memory effects in syntactic ERP tasks. Brain and Cognition, 55, 392395.CrossRefGoogle ScholarPubMed
Sabourin, L., & Stowe, L. A. (2008). Second language processing: when are first and second languages processed similarly? Second Language Research, 24, 397430.CrossRefGoogle Scholar
Slevc, L. R., & Novick, J. M. (2013). Memory and cognitive control in an integrated theory of language processing. Behavioral and Brain Sciences, 36, 373374.CrossRefGoogle Scholar
Sorace, A. (2011). Pinning down the concept of “interface” in bilingualism. Linguistic Approaches to Bilingualism, 1, 133.CrossRefGoogle Scholar
Steinhauer, K., & Drury, J. E. (2012). On the early left-anterior negativity (ELAN) in syntax studies. Brain and Language, 120, 135162.CrossRefGoogle ScholarPubMed
Streb, J., Henninghausen, E., & Rösler, F. (2004). Different anaphoric expressions are investigated by event-related brain potentials. Journal of Psycholinguistic Research, 33, 175201.CrossRefGoogle ScholarPubMed
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643662.CrossRefGoogle Scholar
Tanner, D., Inoue, K., & Osterhout, L. (2014). Brain-based individual differences in online L2 grammatical comprehension. Bilingualism: Language and Cognition, 17, 277293.CrossRefGoogle Scholar
Tanner, D., & Van Hell, J. G. (2014). ERPs reveal individual differences in morphosyntactic processing. Neuropsychologia, 56, 289301.CrossRefGoogle ScholarPubMed
Van Berkum, J. J. A., Brown, C. M., Zwitserlood, P., Kooijman, V., & Hagoort, P. (2005). Anticipating upcoming words in discourse: Evidence from ERPs and reading times. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 443467.Google ScholarPubMed
Van de Meerendonk, N., Indefrey, P., Chwilla, D. J., & Kolk, H. H. J. (2011). Monitoring in language perception: Electrophysiological and hemodynamic responses to spelling violations. NeuroImage, 54, 23502363.CrossRefGoogle ScholarPubMed
Wechsler, D. (1987). Wechsler memory scale-revised (WMS-R) San Antonio: Psychological Corporation.Google Scholar
Wicha, N. Y. Y., Moreno, E. M., & Kutas, M. (2003). Expecting gender: An event related brain potential study on the role of grammatical gender in comprehending a line drawing within a written sentence in Spanish. Cortex, 39, 483508.CrossRefGoogle ScholarPubMed
Wicha, N. Y. Y., Moreno, E. M., & Kutas, M. (2004). Anticipating words and their gender: An event-related brain potential study of semantic integration, gender expectancy, and gender agreement in spanish sentence reading. Journal of Cognitive Neuroscience, 16, 12721288.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Kaan Supplementary Material

Supplementary Material

Download Kaan Supplementary Material(PDF)
PDF 328 KB
21
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Prediction and integration in native and second-language processing of elliptical structures*
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Prediction and integration in native and second-language processing of elliptical structures*
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Prediction and integration in native and second-language processing of elliptical structures*
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *