Skip to main content Accessibility help

Acquiring L2 sentence comprehension: A longitudinal study of word monitoring in noise*



This study investigated the development of second language online auditory processing with ab initio German learners of Dutch. We assessed the influence of different levels of background noise and different levels of semantic and syntactic target word predictability on word-monitoring latencies. There was evidence of syntactic, but not lexical-semantic, transfer from the L1 to the L2 from the onset of L2 learning. An initial stronger adverse effect of noise on syntactic compared to phonological processing disappeared after two weeks of learning Dutch suggesting a change towards more robust syntactic processing. At the same time the L2 learners started to exploit semantic constraints predicting upcoming target words. The use of semantic predictability remained less efficient compared to native speakers until the end of the observation period. The improvement and the persistent problems in semantic processing we found were independent of noise and rather seem to reflect the need for more context information to build up online semantic representations in L2 listening.


Corresponding author

Address for correspondence: Peter Indefrey, Heinrich Heine University Düsseldorf, Institut für Sprache und Information, Universitätsstr. 1, D-40225 Düsseldorf,


Hide All

This research was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO). We would like to thank an anonymous reviewer and Jan Hulstijn for their helpful comments.



Hide All
Baayen, R. H., Piepenbrock, R., & van Rijn, H. (1998). The CELEX Dutch database. Release N32. (accessed October 10, 2004).
Bradlow, A. R., & Bent, T. (2002). The clear speech effect for non-native listeners. Journal of the Acoustical Society of America, 112 (1), 272284.
Caramazza, A., & Brones, I. (1979). Lexical access in bilinguals. Bulletin of the Psychonomic Society, 13, 212214.
Clahsen, H., & Felser, C. (2006). How native-like is non-native language processing? Trends in Cognitive Sciences, 10 (12), 564570.
Craig, C. H. (1988). Effect of three conditions of predictability on word-recognition performance. Journal of Speech and Hearing Research, 31, 588592.
Cutler, A., Cooke, M., Lecumberri, M. L., & Pasveer, D. (2007). L2 consonant identification in noise: Cross-language comparisons. Presented at the Interspeech ’07, Antwerp.
Cutler, A., Weber, A., Smits, R., & Cooper, N. (2004). Patterns of English phoneme confusions by native and non-native listeners. Journal of the Acoustical Society of America, 116 (6), 36683678.
Davidson, D. J., & Indefrey, P. (2009). Electrophysiological responses to crossed versus nested structures in German learners of Dutch. Language and Cognitive Processes, 24, 13351369.
De Groot, A. M. B. (1992). Determinants of word translation. Journal of Experimental Psychology: Learning, Memory and Cognition, 18, 10011018.
De Groot, A. M. B., & Nas, G. L. (1991). Lexical representation of cognates and noncognates in compound bilinguals. Journal of Memory and Language, 30, 90123.
DeKeyser, R. (2001). Automaticity and automatization. In Robinson, P. (ed.), Cognition and second language instruction, pp. 125151. New York: Cambridge University Press.
Dijkstra, T., Grainger, J., & van Heuven, W. J. B. (1999). Recognition of cognates and interlingual homographs: The neglected role of phonology. Journal of Memory and Language, 41, 496518.
Favreau, M., & Segalowitz, N. S. (1983). Automatic and controlled processes in the first-and second-language reading of fluent bilinguals. Memory and Cognition, 11 (6), 565574.
Florentine, M. (1985). Speech perception in noise by fluent, non-native listeners. Journal of the Acoustical Society of America, 77, s106.
Florentine, M., Buus, S., Scharf, B., & Canevet, G. (1984). Speech reception thresholds in noise for native and non-native listeners. Journal of the Acoustical Society of America, 75, s84.
Frenck-Mestre, C. (2005). Eye-movement recording as a tool for studying syntactic processing in a second language: A review of methodologies and experimental findings. Second Language Research, 21, 175198.
Garcia Lecumberri, M. L., & Cooke, M. (2006). Effect of masker type on native and non-native consonant perception in noise. Journal of the Acoustical Society of America, 119 (4), 24452454.
Gong, J. (2006). Comparing non-native and native speech perception in noise. Masters thesis, University of Sheffield.
Gullberg, M., & Indefrey, P. (2003). Language background questionnaire. Nijmegen: Max Planck Institute for Psycholinguistics. (accessed January 30, 2005).
Hoen, M., Meunier, F., Grataloup, C.-L., Pellegrino, F., Grimault, N., Perrin, F., Perrot, X., & Collet, L. (2007). Phonetic and lexical interferences in informational masking during speech-in-speech comprehension. Speech Communication, 49, 905916.
Hulstijn, J. H. (2010). Measuring second language proficiency. In Blom, E. & Unsworth, S. (eds.), Experimental methods in language acquisition research (EMLAR), pp. 185199. Amsterdam: John Benjamins.
Kalikow, D. N., Stevens, K. N., & Elliott, L. L. (1977). Development of a test of speech intelligibility in noise using sentence materials with controlled word predictability. Journal of the Acoustical Society of America, 61 (5), 13371351.
Kilborn, K. (1992). On-line integration of grammatical information in a second language. In Harris, R. (ed.), Cognitive processing in bilinguals, pp. 337350. Amsterdam: Elsevier.
Marslen-Wilson, W., & Tyler, L. K. (1980). The temporal structure of spoken language understanding. Cognition, 8, 171.
Mayo, L., Florentine, M., & Buus, S. (1997). Age of second-language acquisition and perception of speech in noise. Journal of Speech, Language, and Hearing Research, 40, 686693.
Nabelek, A. K., & Donahue, A. M. (1984). Perception of consonants in reverberation by native and non-native listeners. Journal of the Acoustical Society of America, 75, 632634.
Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill acquisition and the law of practice. In Anderson, J. R. (ed.), Cognitive skills and their acquisition, pp. 155. Hillsdale, NJ: Lawrence Erlbaum.
Odlin, T. (1989). Language transfer. New York: Cambridge University Press.
Odlin, T. (2003). Cross-linguistic influence. In Doughty, C. J. & Long, M. H. (eds.), The handbook of second language acquisition, pp. 436486. Malden, MA: Blackwell.
Roberts, L., Gullberg, M., & Indefrey, P. (2008). On-line pronoun resolution in L2 discourse: L1 influence and general learner effects. Studies in Second Language Acquisition, 30 (3), 333357.
Roussohatzaki, M., & Florentine, M. (1990). Perception of American-English in noise by Greek listeners. Journal of the Acoustical Society of America, 87, s72.
Schepens, J., Dijkstra, T., & Grootjen, F. (2012). Distributions of cognates in Europe as based on Levenshtein distance. Bilingualism: Language and Cognition, 15 (1), 157166.
Segalowitz, N., & Hulstijn, J. (2005). Automaticity in bilingualism and second language learning. In Kroll, J. F. & De Groot, A. M. B. (eds.), Handbook of bilingualism: Psycholinguistic approaches, pp. 371388. Oxford: Oxford University Press.
Segalowitz, N. S., & Segalowitz, S. J. (1993). Skilled performance, practice, and the differentiation of speed-up from automatization effects: Evidence from second language word recognition. Applied Psycholinguistics, 14, 369385.
Segalowitz, S. J., Segalowitz, N. S., & Wood, A. G. (1998). Assessing the development of automaticity in second language word recognition. Applied Psycholinguistics, 19, 5367.
Sharwood-Smith, M., & Kellerman, E. (1986). Crosslinguistic influence in second language acquisition: An introduction. In Kellerman, E. & Sharwood Smith, M. (eds.), Crosslinguistic influence in second language acquisition, pp. 19. New York: Pergamon Press.
Shi, L.-F. (2010). Perception of acoustically degraded sentences in bilingual listeners who differ in age of English acquisition. Journal of Speech, Language, and Hearing Research, 53, 821835.
Shimizu, T., Makishima, K., Yoshida, M., & Yamagishi, H. (2002). Effect of background noise on perception of English speech for Japanese listeners. Auris Nasus Larynx, 29, 121125.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed