Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-16T14:30:46.684Z Has data issue: false hasContentIssue false

Neural substrates of sign language vocabulary processing in less-skilled hearing M2L2 signers: Evidence for difficult phonological movement perception

Published online by Cambridge University Press:  06 July 2017

JOSHUA T. WILLIAMS*
Affiliation:
Department of Psychological and Brain Sciences, Indiana University Program in Cognitive Science, Indiana University Speech and Hearing Sciences, Indiana University
ISABELLE DARCY
Affiliation:
Program in Cognitive Science, Indiana University Second Language Studies, Indiana University
SHARLENE D. NEWMAN
Affiliation:
Department of Psychological and Brain Sciences, Indiana University Program in Cognitive Science, Indiana University Program in Neuroscience, Indiana University
*
Address for correspondence: Joshua Williams, Cognitive Neuroimaging Laboratory, Indiana University, 1101 E. 10th Street, Bloomington, IN 47405. willjota@indiana.edu

Abstract

No previous research has investigated the neural correlates of vocabulary acquisition in second language learners of sign language. The present study investigated whether poor vocabulary knowledge engaged similar prefrontal lexico-semantic regions as seen in unimodal L2 learners. Behavioral improvements in vocabulary knowledge in a cohort of M2L2 learners were quantified. Results indicated that there is significant increase in vocabulary knowledge after one semester, but stabilized in the second semester. A longitudinal fMRI analysis was implemented for a subset of learners who were followed for the entire 10 months during initial sign language acquisition. The results indicated that learners who had poor sign vocabulary knowledge consistently showed greater activation in regions involved in motor simulation, salience, biological motion and spatial processing, and lexico-semantic retrieval. In conclusion, poor vocabulary knowledge requires greater engagement of modality-independent and modality-dependent regions, which could account for behavioral evidence of difficulty in visual phonology processing.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*Supported by the National Science Foundation (NSF) Graduate Research Fellowship #1342962 (JTW). Funding also provided by the Indiana University Imaging Research Facility Brain Scan Credit Program (JTW, ID & SDN).

References

Abutalebi, J. (2008). Neural aspects of second language representation and language control. Acta Psychologica, 128 (3), 466478.Google Scholar
Allen, J. S., Emmorey, K., Bruss, J., & Damasio, H. (2008). Morphology of the insula in relation to hearing status and sign language experience. The Journal of Neuroscience, 28 (46), 1190011905.Google Scholar
Allman, J. M., Hakeem, A., Erwin, J. M., Nimchinsky, E., & Hof, P. (2001). The anterior cingulate cortex. Annals of the New York Academy of Sciences, 935 (1), 107117.Google Scholar
Ardila, A., Bernal, B., & Rosselli, M. (2014). Participation of the insula in language revisited: a meta-analytic connectivity study. Journal of Neurolinguistics, 29, 3141.Google Scholar
Baker, A., van den Bogaerde, B., Pfau, R., & Schermer, T. (Eds.). (2016). The Linguistics of Sign Languages: An introduction. Amsterdam: John Benjamins Publishing Company.CrossRefGoogle Scholar
Blasi, V., Young, A. C., Tansy, A. P., Petersen, S. E., Snyder, A. Z., & Corbetta, M. (2002). Word retrieval learning modulates right frontal cortex in patients with left frontal damage. Neuron, 36 (1), 159170.Google Scholar
Bochner, J. H., Christie, K., Hauser, P. C., & Searls, J. M. (2011). When is a difference really different? Learners’ discrimination of linguistic contrasts in American Sign Language. Language Learning, 61 (4), 13021327.Google Scholar
Booth, J.R., Wood, L., Lu, D., Houk, J.C., & Britan, T. (2007). The role of the basal ganglia and the cerebellum in language processing. Brain Research, 1133, 136144.Google Scholar
Brentari, D. (1998). A prosodic model of sign language phonology. Cambridge: MIT Press.Google Scholar
Brett, M., Anton, J. L., Valabregue, R., & Poline, J. B. (2002). Region of interest analysis using the MarsBar toolbox for SPM 99. Neuroimage, 16 (2), S497.Google Scholar
Bundgaard-Nielsen, R.L., Best, C.T., & Tyler, M.D. (2011a). Vocabulary size matters: The assimilation of second-language Australian English vowels to first-language Japanese vowel categories. Applied Psycholinguistics, 32, 5167.Google Scholar
Bundgaard-Nielsen, R.L., Best, C.T., & Tyler, M.D. (2011b). Vocabulary size associated with second-language vowel perception performance in adult learners. Studies in Second Language Acquisition, 33 (3), 433461.Google Scholar
Bundgaard-Nielsen, R.L., Best, C.T., Kroos, C., & Tyler, M.D. (2012). Second language learners’ vocabulary expansion is associated with I proved second language vowel intelligibility. Applied Psycholinguistics, 33 (3), 643664.Google Scholar
Burgess, P. W., Gilbert, S. J., & Dumontheil, I. (2007). Function and localization within rostral prefrontal cortex (area 10). Philosophical Transactions of the Royal Society B: Biological Sciences, 362 (1481), 887899.Google Scholar
Campbell, R., MacSweeney, M., Surguladze, S., Calvert, G.A, McGuire, P.K, Brammer, M.J, David, A.S, & Suckling, J. (2001). Cortical substrates for the perception of face actions: an fMRI study of the specificity of activation for seen speech and for meaningless lower-face acts (gurning). Cognitive Brain Research. 12, 233243.Google Scholar
Caselli, N., Sehyr Sevcikova, Z., Cohen-Goldberg, A., & Emmorey, K. (2016). ASL-Lex: A Lexical Database for American Sign Language. Behavioral Research Methods, 118.Google Scholar
Cohen, J. D., Botvinick, M., & Carter, C. S. (2000). Anterior cingulate and prefrontal cortex: who's in control?. Nature Neuroscience, 3, 421423.CrossRefGoogle ScholarPubMed
Corina, D. P. (1999). Neural disorders of language and movement: Evidence from American Sign Language. Gesture, Speech, and Sign, 2744.Google Scholar
Corina, D. P., & Knapp, H. P. (2006). Psycholinguistic and neurolinguistic perspectives on sign languages. Handbook of psycholinguistics, 2, 10011024.Google Scholar
Darcy, I., Park, H., & Yang, C. L. (2015). Individual differences in L2 acquisition of English phonology: The relation between cognitive abilities and phonological processing. Learning and Individual Differences, 40, 6372.Google Scholar
Emmorey, K. (2015). The Neurobiology of Sign Language. Arthur, W. Toga (Ed.), Academic Press: Waltham, 475479.Google Scholar
Emmorey, K., Xu, J., & Braun, A. (2011). Neural responses to meaningless pseudosigns: evidence for sign-based phonetic processing in superior temporal cortex. Brain and Language, 117 (1), 3438.Google Scholar
Emmorey, K., & McCullough, S. (2009). The bimodal bilingual brain: Effects of sign language experience. Brain and Language, 109 (2), 124132.Google Scholar
Emmorey, K., Giezen, M. R., & Gollan, T. H. (2015). Psycholinguistic, cognitive, and neural implications of bimodal bilingualism. Bilingualism: Language and Cognition, 1–20.Google Scholar
Emmorey, K., Grabowski, T., McCullough, S., Ponto, L. L., Hichwa, R. D., & Damasio, H. (2005). The neural correlates of spatial language in English and American Sign Language: a PET study with hearing bilinguals. Neuroimage, 24 (3), 832840.Google Scholar
Emmorey, K., McCullough, S., Mehta, S., & Grabowski, T. J. (2014). How sensory-motor systems impact the neural organization for language: direct contrasts between spoken and signed language. Frontiers in Psychology, 5.Google Scholar
Fiez, J. A. (1997). Phonology, semantics, and the role of the left inferior prefrontal cortex. Human Brain Mapping, 5 (2), 7983.Google Scholar
Friston, K. J., Holmes, A. P., Poline, J. B., Grasby, P. J., Williams, S. C. R., Frackowiak, R. S., & Turner, R. (1995). Analysis of fMRI time-series revisited. Neuroimage, 2 (1), 4553.Google Scholar
Grant, A. M., Fang, S. Y., & Li, P. (2015). Second language lexical development and cognitive control: A longitudinal fMRI study. Brain and language, 144, 3547.Google Scholar
Grosvald, M., Lachaud, C., & Corina, D. (2012). Handshape monitoring: Evaluation of linguistic and perceptual factors in the processing of American Sign Language. Language and Cognitive Processes, 27 (1), 117141.Google Scholar
Heim, S., Eickhoff, S. B., Ischebeck, A. K., Friederici, A. D., Stephan, K. E., & Amunts, K. (2009). Effective connectivity of the left BA 44, BA 45, and inferior temporal gyrus during lexical and phonological decisions identified with DCM. Human Brain Mapping, 30 (2), 392402.Google Scholar
Ishikawa, S. I., & Wei, Q. (2009). Brain imaging for SLA research: An fMRI study of L2 learners' different levels of word semantic processing. Brain Topography and Multimodal Imaging, 4144.Google Scholar
Kaiser, S., Walther, S., Nennig, E., Kronmüller, K., Mundt, C., Weisbrod, M., Stippich, C., & Vogeley, K. (2008). Gender-specific strategy use and neural correlates in a spatial perspective taking task. Neuropsychologia, 46 (10), 25242531.Google Scholar
Kroll, J. F., Dussias, P. E., Bice, K., & Perrotti, L. (2015). Bilingualism, Mind, and Brain. Annual Review of Linguistics, 1 (1), 377394.Google Scholar
Kurth, F., Zilles, K., Fox, P. T., Laird, A. R., & Eickhoff, S. B. (2010). A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Structure and Function, 214 (5-6), 519534.Google Scholar
Landerman, L. R., Land, K. C., & Pieper, C. F. (1997). An empirical evaluation of the predictive mean matching method for imputing missing values. Sociological Methods & Research, 26 (1), 333.Google Scholar
Li, L., Abutalebi, J., Zou, L., Yan, X., Liu, L., Feng, X., Guo, T., & Ding, G. (2015). Bilingualism alters brain functional connectivity between “control” regions and “language” regions: Evidence from bimodal bilinguals. Neuropsychologia, 71, 236247.CrossRefGoogle ScholarPubMed
Marian, V., Shildkrot, Y., Blumenfeld, H. K., Kaushanskaya, M., Faroqi-Shah, Y., & Hirsch, J. (2007). Cortical activation during word processing in late bilinguals: similarities and differences as revealed by functional magnetic resonance imaging. Journal of Clinical and Experimental Neuropsychology, 29 (3), 247265.Google Scholar
Marian, V., Spivey, M., & Hirsch, J. (2003). Shared and separate systems in bilingual language processing: Converging evidence from eyetracking and brain imaging. Brain and language, 86 (1), 7082.Google Scholar
Morford, J. P., & Carlson, M. L. (2011). Sign perception and recognition in non-native signers of ASL. Language Learning and Development, 7 (2), 149168.Google Scholar
Morford, J. P., Grieve-Smith, A. B., MacFarlane, J., Staley, J., & Waters, G. (2008). Effects of language experience on the perception of American Sign Language. Cognition, 109 (1), 4153.Google Scholar
Newman-Norlund, R. D., van Schie, H. T., van Zuijlen, A. M., & Bekkering, H. (2007). The mirror neuron system is more active during complementary compared with imitative action. Nature Neuroscience, 10 (7).Google Scholar
Perani, D., & Abutalebi, J. (2005). The neural basis of first and second language processing. Current Opinion in Neurobiology, 15 (2), 202206.CrossRefGoogle ScholarPubMed
Pichler, C. D. (2011). Sources of handshape error in first-time signers of ASL. In Mathur, G. & Napoli, D. J. (Eds.), Deaf around the world: The impact of language (pp. 96121). Oxford: Oxford University Press.Google Scholar
Price, C. J. (2010). The anatomy of language: a review of 100 fMRI studies published in 2009. Annals of the New York Academy of Sciences, 1191 (1), 6288.CrossRefGoogle Scholar
Puce, A., & Perrett, D. (2003). Electrophysiology and brain imaging of biological motion. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 358 (1431), 435445.Google Scholar
Rosen, R. (2012). Beginning L2 Production Errors in ASL Lexical Phonology. Sign Language and Linguistics, 7, 3161.CrossRefGoogle Scholar
Saidi, L. G., Perlbarg, V., Marrelec, G., Pélégrini-Issac, M., Benali, H., & Ansaldo, A. I. (2013). Functional connectivity changes in second language vocabulary learning. Brain and Language, 124 (1), 5665.CrossRefGoogle Scholar
Sakai, K. L. (2005). Language acquisition and brain development. Science, 310 (5749), 815819.Google Scholar
Sandler, W., & Lillo-Martin, D. (2006). Sign language and linguistic universals. Cambridge: Cambridge University Press.Google Scholar
Schlehofer, D., & Tyler, I.J. (2016). Errors in second language learners’ production of phonological contrasts in American Sign Language. Iinternational Journal of Language and Linguistics, 3 (2), 3038.Google Scholar
Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A.L., & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27 (9), 23492356.Google Scholar
Serrien, D. J., Strens, L. H., Oliviero, A., & Brown, P. (2002). Repetitive transcranial magnetic stimulation of the supplementary motor area (SMA) degrades bimanual movement control in humans. Neuroscience Letters, 328 (2), 8992.Google Scholar
Shima, K., & Tanji, J. (1998). Role for cingulate motor area cells in voluntary movement selection based on reward. Science, 282 (5392), 13351338.Google Scholar
Smith, D. V., Davis, B., Niu, K., Healy, E. W., Bonilha, L., Fridriksson, J., & Rorden, C. (2010). Spatial attention evokes similar activation patterns for visual and auditory stimuli. Journal of Cognitive Neuroscience, 22 (2), 347361.Google Scholar
Smith, C., Lentz, E., & Mikos, K.P. (1988a). Signing Naturally Level 1. San Diego, California: DawnSignPress.Google Scholar
Smith, C., Lentz, E., & Mikos, K.P. (1988b). Signing Naturally Level 2. San Diego, California: DawnSignPress.Google Scholar
Smith, C., Lentz, E., & Mikos, K.P. (2008). Signing Naturally. San Diego, California: DawnSignPress.Google Scholar
Söderfeldt, B., Ingvar, M., Rönnberg, J., Eriksson, L., Serrander, M., & Stone-Elander, S. (1997). Signed and spoken language perception studied by positron emission tomography. Neurology, 49 (1), 8287.Google Scholar
Sohn, M. H., Albert, M. V., Jung, K., Carter, C. S., & Anderson, J. R. (2007). Anticipation of conflict monitoring in the anterior cingulate cortex and the prefrontal cortex. Proceedings of the National Academy of Sciences, 104 (25), 1033010334.Google Scholar
Stein, M., Dierks, T., Brandeis, D., Wirth, M., Strik, W., & Koenig, T. (2006). Plasticity in the adult language system: A longitudinal electrophysiological study on second language learning. Neuroimage, 33 (2), 774783.Google Scholar
Stein, M., Federspiel, A., Koenig, T., Wirth, M., Strik, W., Wiest, R., & Dierks, T. (2012). Structural plasticity in the language system related to increased second language proficiency. Cortex, 48 (4), 458465.Google Scholar
Thompson-Schill, S. L., D'Esposito, M., Aguirre, G. K., & Farah, M. J. (1997). Role of left inferior prefrontal cortex in retrieval of semantic knowledge: A reevaluation. Proceedings of the National Academy of Sciences, 94 (26), 1479214797.Google Scholar
Uddin, L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nature Reviews Neuroscience, 16 (1), 5561.Google Scholar
van der Slik, F. W., van Hout, R. W., & Schepens, J. J. (2015). The gender gap in second language acquisition: Gender differences in the acquisition of Dutch among immigrants from 88 countries with 49 mother tongues. PloS One, 10 (11), e0142056.Google Scholar
van Hell, J. G., & Tanner, D. (2012). Second Language Proficiency and Cross-Language Lexical Activation. Language Learning, 62 (2), 148171.Google Scholar
Verbeke, G., & Molenberghs, G. (2009). Linear mixed models for longitudinal data. Springer Science & Business Media.Google Scholar
Vigneau, M., Beaucousin, V., Herve, P. Y., Duffau, H., Crivello, F., Houde, O., Mazoyer, N., & Tzourio-Mazoyer, N. (2006). Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage, 30 (4), 14141432.Google Scholar
Williams, J.T., & Newman, S.D. (2015). Interlanguage dynamics and lexical networks in nonnative L2 signers of ASL: Cross-modal rhyme priming. Bilingualism: Language and Cognition, 118. doi: 10.1017/S136672891500019XGoogle Scholar
Williams, J.T., & Newman, S.D. (2016). Phonological substitution errors in L1 ASL sentence processing by hearing M2L2 learners. Second Language Research, 32 (3), 347366. doi: 10.1177/0267658315626211Google Scholar
Williams, J.T., Darcy, I., & Newman, S.D. (2015). Modality-independent neural mechanisms for novel phonetic processing. Brain Research, 1620, 107115. doi:10.1016/j.brainres.2015.05.014Google Scholar
Williams, J.T., Darcy, I., & Newman, S.D. (2016). Modality-specific processing precedes amodal linguistic processing during L2 sign language acquisition: a longitudinal study. Cortex, 75, 5667. doi: 10.1016/j.cortex.2015.11.015.Google Scholar
Zou, L., Ding, G., Abutalebi, J., Shu, H., & Peng, D. (2012). Structural plasticity of the left caudate in bimodal bilinguals. Cortex, 48 (9), 11971206Google Scholar