Skip to main content Accessibility help
×
Home

Understanding individual variation in levels of second language attainment through the lens of critical period mechanisms

  • REBECCA REH (a1), MARIA ARREDONDO (a1) and JANET F. WERKER (a1)

Extract

Mayberry and Kluender (2017) present an important and compelling argument that in order to understand critical periods (CPs) in language acquisition, it is essential to disentangle studies of late first language (L1) acquisition from those of second language (L2) acquisition. Their primary thesis is that timely exposure to an L1 is crucial for establishing language circuitry, thus providing a foundation on which an L2 can build. They note that while there is considerable evidence of interference from the L1 on acquisition of the L2 – especially in late L2 learners (as in our work on cascading influences on phonetic category learning and visual language discrimination, e.g., Werker & Hensch, 2015 and Weikum, Vouloumanos, Navarra, Soto-Faraco, Sebastián-Gallés & Werker, 2013, respectively) – there are other examples of ways in which the L1 can scaffold L2 acquisition. Mayberry and Kluender take this evidence of L1 scaffolding L2 as undermining the value of considering CPs as useful in understanding L2 acquisition.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Understanding individual variation in levels of second language attainment through the lens of critical period mechanisms
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Understanding individual variation in levels of second language attainment through the lens of critical period mechanisms
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Understanding individual variation in levels of second language attainment through the lens of critical period mechanisms
      Available formats
      ×

Copyright

Corresponding author

Address for correspondence: Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, Canada, V6T 1Z4jwerker@psych.ubc.ca

References

Hide All
Arredondo, M. M., Hu, X., Seifert, E., Satterfield, T., & Kovelman, I. (under revision). Bilingual exposure enhances left IFG specialization for language in children. Bilingualism: Language & Cognition.
Correia, P. A., Lottem, E., Banerjee, D., Machado, A. S., Carey, M. R., & Mainen, Z. F. (2017). Transient inhibition and long-term facilitation of locomotion by phasic optogenetic activation of serotonin neurons. eLife, 6, e20975. doi: 10.7554/eLife.20975
Finn, A. S., Kam, C. L. H., Ettlinger, M., Vytlacil, J., & D'Esposito, M. (2013). Learning language with the wrong neural scaffolding: the cost of neural commitment to sounds. Frontiers in Systems Neuroscience, 7. doi: 10.3389/fnsys.2013.00085
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., Nugent, T. F. 3rd, Herman, D. H., Clasen, L. S., Toga, A. W., Rapoport, J. L., & Thompson, P. M. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101, 81748179. doi: 10.1073/pnas.0402680101
Hasselmo, M. E., & Sarter, M. (2011). Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology, 36, 5273. doi:10.1038/npp.2010.104
Maya Vetencourt, J. F., Sale, A., Viegi, A., Baroncelli, L., De Pasquale, R., O'Leary, O. F., Castrén, E., & Maffei, L. (2008). The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science, 320, 385388. doi:10.1126/science.1150516
Mayberry, R. I., & Kluender, R. (2017). Rethinking the critical period for language: New insights into an old question from American Sign Language. Bilingualism: Language and Cognition doi:10.1017/S13667289170007
McLaughlin, J., Tanner, D., Pitkänen, I., Frenck‐Mestre, C., Inoue, K., Valentine, G., & Osterhout, L. (2010). Brain potentials reveal discrete stages of L2 grammatical learning. Language Learning, 60, 123150. doi:10.1111/j.1467-9922.2010.00604.x
Morishita, H., Miwa, J. M., Heintz, N., & Hensch, T. K. (2010). Lynx1, a cholinergic brake, limits plasticity in adult visual cortex. Science, 330, 12381240. doi: 10.1126/science.1195320
Myers, E. B. (2014). Emergence of category-level sensitivities in non-native speech sound learning. Frontiers in Neuroscience, 8. doi:10.3389/fnins.2014.00238
Pallier, C., Bosch, L., & Sebastián-Gallés, N. (1997). A limit on behavioral plasticity in speech perception. Cognition, 64, B9–B17. doi:10.1016/S0010-0277(97)00030-9
Sebastián-Gallés, N., & Kroll, J. (2003) Phonology in bilingual language Processing: Acquisition, Perception, and Production. In Schiller, N. O. and Meyer, A. (Eds.), Phonetics and Phonology in Language Comprehension and Production: Differences and Similarities (pp. 279318). Berlin: Mouton de Gruyter.
Stryker, M. P. (2014). A neural circuit that controls cortical state, plasticity, and the gain of sensory responses in mouse. Cold Spring Harbor Symposia on Quantitative Biology, 79, 19. doi: 10.1101/sqb.2014.79.024927
Weikum, W. M., Oberlander, T. F., Hensch, T. K., & Werker, J. F. (2012). Prenatal exposure to antidepressants and depressed maternal mood alter trajectory of infant speech perception. Proceedings of the National Academy of Sciences, 109, 1722117227. doi: 10.1073/pnas.1121263109
Weikum, W.M., Vouloumanos, A., Navarra, J., Soto-Faraco, S., Sebastián-Gallés, N., & Werker, J.F. (2013). Age-related sensitive periods influence visual language discrimination in adults. Frontiers in Systems Neuroscience, 7, 86.
Werker, J. F., & Hensch, T. K. (2015). Critical Periods in Speech Perception: New Directions. Annual Review of Psychology, 66. doi:10.1146/annurev-psych-010814-015104

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed