Skip to main content
×
×
Home

Biomarkers and the diagnosis of preclinical dementia

  • Philippa Lilford (a1) and Julian C. Hughes (a2)
Summary

Alzheimer's disease pathology accumulates years before the onset of clinical symptoms and has been termed ‘preclinical dementia’. Biomarkers have been developed to detect this pathology – namely, brain amyloid deposition and markers of neurodegeneration. In this article we describe these biomarkers and review the evidence for their clinical use in predicting risk both in the cognitively ‘normal’ and in those who already have established cognitive decline. We also discuss the limitations and ethical considerations of these tests and consider whether we should start incorporating Alzheimer's disease biomarkers into clinical practice. We find that, because many cognitively healthy people will have Alzheimer's pathology, and it is not clear whether this does help predict future risk of Alzheimer's disease, diagnosing preclinical dementia carries numerous ethical implications and is currently not being advocated outside research settings.

LEARNING OBJECTIVES

  • Understand the concepts of preclinical and prodromal Alzheimer's disease and the use of biomarkers in this context
  • Analyse the supporting evidence for the use of biomarkers in prodromal and preclinical dementia
  • Apply this information to everyday clinical practice

DECLARATION OF INTEREST

J. C. H. works in the Research Institute for the Care of Older People (RICE), which undertakes clinical drug trials for drug companies. He is a sub-investigator on a number of trials (some of which involve neuroimaging and biomarkers) and principal investigator and chief investigator on two trials (neither of which involves biomarkers). All of these trials concern Alzheimer's disease or dementia. He does not receive any direct personal payment from the trials: the payment goes to RICE, which does, however, fund almost half of his post. RICE is an independent charity and separate from the University of Bristol.

Copyright
Corresponding author
Correspondence Professor Julian C. Hughes, The RICE Centre, Building 8, Royal United Hospital, Combe Park, Bath BA1 3NG, UK. Email: julian.hughes@bristol.ac.uk
References
Hide All
Anoop, A, Singh, PK, Jacob, RS, et al. (2010) CSF biomarkers for Alzheimer's disease diagnosis. International Journal of Alzheimer's Disease, 2010: article ID 606802.
Bacskai, B, Frosch, J, Freeman, M, et al. (2007) Molecular imaging with Pittsburgh Compound B confirmed at autopsy: a case report. Archives of Neurology, 64: 431–4.
Bennett, DA, Schneider, JA, Wilson, RS, et al. (2004) Neurofibrillary tangles mediates the association of amyloid load with clinic Alzheimer disease and level of cognitive function. Archives of Neurology, 61: 378–84.
Berti, V, Polio, C, Lombardi, G, et al. (2016) Rethinking on the concept of biomarkers in preclinical Alzheimer's disease. Neurological Sciences, 37: 663–72.
Chetelat, G, Villemagne, VL, Pike, K, et al. (2011) Independent contribution of temporal b-amyloid deposition to memory decline in non-demented elderly. Brain, 134: 798807.
De Meyer, G, Shapiro, F, Vanderstichele, H, et al. (2010) Diagnosis-independent Alzheimer disease biomarker signature in cognitively normal elderly people. Archives of Neurology, 67: 949–56.
De Souza, LC, Lamari, F, Belliard, S, et al. (2011) Cerebrospinal fluid biomarkers in the differential diagnosis of Alzheimer's disease from other cortical dementias. Journal of Neurology, Neurosurgery, and Psychiatry, 82: 240–6.
Dubois, B, Albert, ML (2004) Amnestic MCI or prodromal Alzheimer's disease? Lancet Neurology, 3: 246–8.
Dubois, B, Feldman, H, Jacova, C, et al. (2007) Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria. Lancet Neurology, 6: 734–46.
Dubois, B, Feldman, HH, Jacova, C, et al. (2014) Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria. Lancet Neurology, 13: 614–29.
Estes, CL, Binney, EA (1989) The biomedicalization of aging: dangers and dilemmas. Gerontologist, 29: 587–96.
Fagan, A, Mintum, M, Mach, R, et al. (2006) Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Aβ42 in humans. Annals of Neurology, 59: 512–9.
Fagan, AM, Roe, CM, Xiong, C, et al. (2007) Cerebrospinal fluid tau/β-amyloid42 ratio as a prediction of cognitive decline in nondemented older adults. Archives of Neurology, 64: 343–9.
Green, R, Roberts, J, Cupples, L, et al. (2009) Disclosure of APOE genotype for risk of Alzheimer's disease. New England Journal of Medicine, 361: 245–54.
Hansson, O, Zetterberg, H, Buchhave, P et al. (2006) Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurology, 5: 228–34.
Hardy, J, Selkoe, DJ (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science, 297: 353–6.
Harkins, K, Sankar, P, Sperling, R, et al. (2015) Development of a process to disclose amyloid imaging results to cognitively normal older adult research participants. Alzheimer's Research & Therapy, 7: 26.
Herskovits, Z, Growden, J (2010) Sharpen that needle. Archives of Neurology, 67: 918–20.
Hughes, J, Ingram, T, Jarvis, A, et al. (2017) Consent for the diagnosis of preclinical dementia states: a review. Maturitas, 98: 30–4.
Jack, CR Jr, Albert, MS, Knopman, DS, et al. (2011) Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7: 257–62.
Jack, CR Jr, Knopman, DS, Jagust, WJ, et al. (2010) Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lanet Neurology, 9: 119–28.
Klein, WL, Stine, WB Jr, Teplow, DB (2004) Small assemblies of unmodified amyloid beta protein are the proximate neurotoxin in Alzheimer's disease. Neurobiology of Aging, 25: 569–80.
Koopman, K, Le Bastard, N, Martin, JJ, et al. (2009) Improved discrimination of autopsy-confirmed Alzheimer's disease from non-AD dementias using CSF P-tau. Neurochemistry International, 55: 214–8.
Li, G, Sokal, I, Quinn, JF, et al. (2007) CSF tau/Abeta42 ratio for increased risk of mild cognitive impairment: a follow-up study. Neurology, 69: 631–9.
Lim, J, Li, Q, He, Z, et al. (2016) The eye as a biomarker for Alzheimer's disease. Frontiers in Neuroscience, 10: 536.
Livingston, G, Sommerlad, A, Orgeta, V, et al. (2017) Dementia prevention, intervention, and care. Lancet, 390: 2673–734.
Mattsson, N, Zetterberg, H, Hansson, O, et al. (2009) CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA, 302: 385–93.
Mattsson, N, Andreasson, U, Persson, S, et al. (2013) CSF biomarker variability in the Alzheimer's Association quality control program. Alzheimer's & Dementia, 9: 251–61.
McKhann, G, Drachman, D, Folstein, M, et al. (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 34: 939–44.
Morris, JC, Storandt, M, McKeel, DW Jr, et al. (1996) Cerebral amyloid deposition and diffuse plaques in ‘normal’ aging: evidence for presymptomatic and very mild Alzheimer's disease. Neurology, 46: 707–19.
Morris, JC, Roe, CM, Grant, EA, et al. (2009) Pittsburgh Compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease. Archives of Neurology, 66: 1469–75.
Nakamura, A, Kaneko, N, Villemagne, VL, et al. (2018) High performance plasma amyloid-β biomarkers for Alzheimer's disease. Nature, 554: 249–54.
Parnetti, L, Lanari, A, Silvestrelli, G, et al. (2006) Diagnosing prodromal Alzheimer's disease: role of CSF biochemical markers. Mechanisms of Ageing and Development, 127: 129–32.
Prince, M, Comas-Herrera, A, Knapp, M, et al. (2016) World Alzheimer Report 2016: Improving Healthcare for People Living with Dementia. Coverage, Quality and Costs Now and in the Future. Alzheimer‘s Disease International.
Resnick, SM, Sojkova, J, Zhou, Y, et al. (2010) Longitudinal cognitive decline is associated with fibrillar amyloid-beta measured by [11C]PiB. Neurology, 74: 807–15.
Shivamurthy, V, Tahari, A, Marcus, C, et al. (2015) Brain FDG PET and the diagnosis of dementia. Nuclear Medicine and Molecular Imaging, 204: 7685.
Snider, BJ, Fagan, AM, Roe, C, et al. (2009) Cerebrospinal fluid biomarkers and rate of cognitive decline in very mild dementia of the Alzheimer type. Archives of Neurology, 66: 638–45.
Sperling, RA, Aisen, PS, Beckett, LA, et al. (2011) Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging–Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & Dementia, 7: 280–92.
Stern, Y (2012) Cognitive reserve in ageing and Alzheimer's disease. Lancet Neurology, 11: 1006–12.
Storandt, M, Mintun, MA, Head, D, et al. (2009) Cognitive decline and brain volume loss as signatures of cerebral amyloid-beta peptide deposition identified with Pittsburgh compound B: cognitive decline associated with Abeta deposition. Archives of Neurology, 66: 1476–81.
Tapiola, T, Alafuzoff, I, Herukka, SK, et al. (2009) Cerebrospinal fluid β-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Archives of Neurology, 66: 382–9.
Van Rossum, IA, Vos, S, Handels, R, et al. (2010) Biomarkers as predictors for conversion from mild cognitive impairment to Alzheimer-type dementia: implications for trial design. Journal of Alzheimer's Disease, 20: 881–91.
Vemuri, P, Wiste, HJ, Weigand, SD, et al. (2009) MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change. Neurology, 73: 294301.
Villemagne, VL, Pike, KE, Darby, D, et al. (2008) Aß deposits in older non-demented individuals with cognitive decline are indicative of preclinical Alzheimer's disease. Neuropsychologia, 46: 1688–97.
Visser, PJ, Verhey, F, Knol, D, et al. (2009) Prevalence and prognostic value of CSF markers of Alzheimer's disease pathology in patients with subjective cognitive impairment or mild cognitive impairment in the DESCRIPA study: a prospective cohort study. Lancet Neurology, 8: 619–27.
Watkin, A, Sikdar, S, Majurndar, B, et al. (2013) New diagnostic concepts in Alzheimer's disease. BJPsych Advances, 19: 242–9.
Wilson, JMG, Jungner, G (1968) Principles and Practice of Screening for Disease (Public Health Papers 34). World Health Organization.
Yaffe, K, Weston, A, Graff-Radford, NR, et al. (2011) Association of plasma beta-amyloid level and cognitive reserve with subsequent cognitive decline. JAMA, 305: 261–6.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

BJPsych Advances
  • ISSN: 2056-4678
  • EISSN: 2056-4686
  • URL: /core/journals/bjpsych-advances
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

Biomarkers and the diagnosis of preclinical dementia

  • Philippa Lilford (a1) and Julian C. Hughes (a2)
Submit a response

eLetters

No eLetters have been published for this article.

×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *