Skip to main content
×
×
Home

The effect of second-generation antipsychotics on hippocampal volume in first episode of psychosis: longitudinal study

  • Michael Bodnar (a1) (a2), Ashok K. Malla (a1) (a3), Carolina Makowski (a4), M. Mallar Chakravarty (a3) (a4), Ridha Joober (a1) (a3) and Martin Lepage (a1) (a2) (a4) (a3)...
Abstract
Background

Current neuroscience literature has related treatment with aripiprazole to improved memory performance and subcellular changes in the hippocampus.

Aims

To explore the volumetric changes in hippocampal grey matter in people with a first episode of psychosis (FEP) treated with second-generation antipsychotics.

Method

Baseline and 1-year follow-up magnetic resonance images were obtained. Hippocampal volumes were estimated by using FreeSurfer and MAGeT-Brain. Subgroups included: aripiprazole (n=13), olanzapine (n=12), risperidone/paliperidone (n=24), refused-antipsychotics (n=13) and controls (n=44).

Results

Aripiprazole subgroup displayed significant increases in bilateral hippocampal volume compared with all other subgroups (FreeSurfer: all P's<0.012; MAGeT-Brain: all P's<0.040).

Conclusions

Aripiprazole is a first-line, second-generation treatment option that may provide an added benefit of pro-hippocampal growth. The biological underpinnings of these changes should be the focus of future investigations and may be key towards achieving a better clinical outcome for more individuals.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The effect of second-generation antipsychotics on hippocampal volume in first episode of psychosis: longitudinal study
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The effect of second-generation antipsychotics on hippocampal volume in first episode of psychosis: longitudinal study
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The effect of second-generation antipsychotics on hippocampal volume in first episode of psychosis: longitudinal study
      Available formats
      ×
Copyright
This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) licence (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Corresponding author
Martin Lepage, PhD, Douglas Mental Health University Institute, Frank B. Common Pavilion, F1143, 6875 LaSalle Blvd., Verdun, Quebec H4H 1R3, Canada. Email: martin.lepage@mcgill.ca
Footnotes
Hide All

Declaration of interest

M.L. received financial assistance/compensation for research and educational events from Janssen-Ortho, Eli Lilly, Roche and Otsuka/Lundbeck Alliance. A.K.M. received financial assistance/compensation for research and educational activities from Pfizer, Janssen-Ortho, AstraZeneca and Bristol-Myers Squibb. R.J. received consultancy honorariums from Pfizer and Janssen-Ortho.

Copyright and usage

© The Royal College of Psychiatrists 2016. This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) licence.

Footnotes
References
Hide All
1 Moncrieff, J, Leo, J. A systematic review of the effects of antipsychotic drugs on brain volume. Psychol Med 2010; 40: 1409–22.
2 Olabi, B, Ellison-Wright, I, McIntosh, AM, Wood, SJ, Bullmore, E, Lawrie, SM. Are there progressive brain changes in schizophrenia? A meta-analysis of structural magnetic resonance imaging studies. Biol Psychiatry 2011; 70: 8896.
3 Vita, A, De Peri, L, Deste, G, Barlati, S, Sacchetti, E. The effect of antipsychotic treatment on cortical gray matter changes in schizophrenia: does the class matter? A meta-analysis and meta-regression of longitudinal magnetic resonance imaging studies. Biol Psychiatry 2015; 78: 403–12.
4 Bodnar, M, Malla, AK, Czechowska, Y, Benoit, A, Fathalli, F, Joober, R, et al. Neural markers of remission in first-episode schizophrenia: a volumetric neuroimaging study of the hippocampus and amygdala. Schizophr Res 2010; 122: 7280.
5 Lieberman, J, Chakos, M, Wu, H, Alvir, J, Hoffman, E, Robinson, D, et al. Longitudinal study of brain morphology in first episode schizophrenia. Biol Psychiatry 2001; 49: 487–99.
6 Bervoets, C, Morrens, M, Vansteelandt, K, Kok, F, de Patoul, A, Halkin, V, et al. Effect of aripiprazole on verbal memory and fluency in schizophrenic patients: results from the ESCAPE study. CNS Drugs 2012; 26: 975–82.
7 Kern, RS, Green, MF, Cornblatt, BA, Owen, JR, McQuade, RD, Carson, WH, et al. The neurocognitive effects of aripiprazole: an open-label comparison with olanzapine. Psychopharmacology 2006; 187: 312–20.
8 Riedel, M, Spellmann, I, Schennach-Wolff, R, Musil, R, Dehning, S, Cerovecki, A, et al. Effect of aripiprazole on cognition in the treatment of patients with schizophrenia. Pharmacopsychiatry 2010; 43: 50–7.
9 First, MB, Gibbon, M, Spitzer, RL, Williams, JBW, Benjamin, LS. Structured Clinical Interview for DSM-IV Axis I Disorders, Research DVersion, Patient VEdition. American Psychiatric Press, 1997.
10 Iyer, S, Jordan, G, MacDonald, K, Joober, R, Malla, A. Early intervention for psychosis: a Canadian perspective. J Nerv Ment Dis. 2015; 203: 356–64.
11 Woods, SW. Chlorpromazine equivalent doses for the newer atypical antipsychotics. J Clin Psychiatry 2003; 64: 663–7.
12 Woods, SW. C hlorpromazine Equivalent Doses for Atypical Antipsychotics: An Update 2003–2010. Available at: http://www.scottwilliamwoods.com/files/WoodsEquivUpdate.doc (accessed 29 Feb 2016).
13 Hollingshead, A. Two-Factor Index of Social Position. Yale University Press, 1965.
14 Oldfield, RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychology 1971; 9: 97113.
15 Wechsler, D. Wecshler Adult Intelligence Scale (3rd edn). The Psychological Corporation, 1997.
16 Wechsler, D. Wechsler Abbreviated Scale of Intelligence. The Psychological Corporation, 1999.
17 Malla, AK, Norman, RM, Manchanda, R, Townsend, L. Symptoms, cognition, treatment adherence and functional outcome in first-episode psychosis. Psychol Med 2002; 32: 1109–19.
18 Malla, A, Norman, R, Schmitz, N, Manchanda, R, Bechard-Evans, L, Takhar, J, et al. Predictors of rate and time to remission in first-episode psychosis: a two-year outcome study. Psychol Med 2006; 36: 649–58.
19 Andreasen, NC. Scale for the Assessment of Positive Symptoms (SAPS). University of Iowa, 1984.
20 Andreasen, NC. Modified Scale for the Assessment of Negative Symptoms (SANS). University of Iowa, 1984.
21 Andreasen, NC, Carpenter, WT Jr, Kane, JM, Lasser, RA, Marder, SR, Weinberger, DR. Remission in schizophrenia: proposed criteria and rationale for consensus. Am J Psychiatry 2005; 162: 441–9.
22 Van Leemput, K, Bakkour, A, Benner, T, Wiggins, G, Wald, LL, Augustinack, J, et al. Automated segmentation of hippocampal subfields from ultra-high resolution in vivo MRI. Hippocampus 2009; 19: 549–57.
23 Reuter, M, Fischl, B. Avoiding asymmetry-induced bias in longitudinal image processing. NeuroImage 2011; 57: 1921.
24 Reuter, M, Schmansky, NJ, Rosas, HD, Fischl, B. Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage 2012; 61: 1402–18.
25 Chakravarty, MM, Steadman, P, van Eede, MC, Calcott, RD, Gu, V, Shaw, P, et al. Performing label-fusion-based segmentation using multiple automatically generated templates. Hum Brain Mapp 2013; 34: 2635–54.
26 Winterburn, JL, Pruessner, JC, Chavez, S, Schira, MM, Lobaugh, NJ, Voineskos, AN, et al. A novel in vivo atlas of human hippocampal subfields using high-resolution 3 T magnetic resonance imaging. NeuroImage 2013; 74: 254–65.
27 Pipitone, J, Park, MT, Winterburn, J, Lett, TA, Lerch, JP, Pruessner, JC, et al. Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates. NeuroImage 2014; 101: 494512.
28 Lieberman, JA, Stroup, TS, McEvoy, JP, Swartz, MS, Rosenheck, RA, Perkins, DO, et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 2005; 353: 1209–23.
29 Stip, E, Anselmo, K. Effectiveness of antipsychotics: is the CATIE trial a tsunami? Can Fam Physician 2007; 53: 97–8.
30 Cassidy, CM, Rabinovitch, M, Schmitz, N, Joober, R, Malla, A. A comparison study of multiple measures of adherence to antipsychotic medication in first-episode psychosis. J Clin Psychopharmacol 2010; 30: 64–7.
31 Fu, DJ, Bossie, CA, Sliwa, JK, Ma, YW, Alphs, L. Paliperidone palmitate versus oral risperidone and risperidone long-acting injection in patients with recently diagnosed schizophrenia: a tolerability and efficacy comparison. Int Clin Psychopharmacol 2014; 29: 4555.
32 Spalding, KL, Bergmann, O, Alkass, K, Bernard, S, Salehpour, M, Huttner, HB, et al. Dynamics of hippocampal neurogenesis in adult humans. Cell 2013; 153: 1219–27.
33 Deng, W, Aimone, JB, Gage, FH. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 2010; 11: 339–50.
34 Russo, E, Citraro, R, Davoli, A, Gallelli, L, Di Paola, ED, De Sarro, G. Ameliorating effects of aripiprazole on cognitive functions and depressive-like behavior in a genetic rat model of absence epilepsy and mild-depression comorbidity. Neuropharmacology 2013; 64: 371–9.
35 Nagai, T, Murai, R, Matsui, K, Kamei, H, Noda, Y, Furukawa, H, et al. Aripiprazole ameliorates phencyclidine-induced impairment of recognition memory through dopamine D1 and serotonin 5-HT1A receptors. Psychopharmacology 2009; 202: 315–28.
36 Nowakowska, E, Kus, K, Ratajczak, P, Cichocki, M, Wozniak, A. The influence of aripiprazole, olanzapine and enriched environment on depressant-like behavior, spatial memory dysfunction and hippocampal level of BDNF in prenatally stressed rats. Pharmacol Rep 2014; 66: 404–11.
37 Li, Z, Ichikawa, J, Dai, J, Meltzer, HY. Aripiprazole, a novel antipsychotic drug, preferentially increases dopamine release in the prefrontal cortex and hippocampus in rat brain. Eur J Pharmacol 2004; 493: 7583.
38 Yoneyama, M, Hasebe, S, Kawamoto, N, Shiba, T, Yamaguchi, T, Kikuta, M, et al. Beneficial in vivo effect of aripiprazole on neuronal regeneration following neuronal loss in the dentate gyrus: evaluation using a mouse model of trimethyltin-induced neuronal loss/self-repair in the dentate gyrus. J Pharmacol Sci 2014; 124: 99111.
39 Schlagenhauf, F, Dinges, M, Beck, A, Wustenberg, T, Friedel, E, Dembler, T, et al. Switching schizophrenia patients from typical neuroleptics to aripiprazole: effects on working memory dependent functional activation. Schizophr Res 2010; 118: 189200.
40 Schreiber, R, Newman-Tancredi, A. Improving cognition in schizophrenia with antipsychotics that elicit neurogenesis through 5-HT(1A) receptor activation. Neurobiol Learn Memory 2014; 110: 7280.
41 Halim, ND, Weickert, CS, McClintock, BW, Weinberger, DR, Lipska, BK. Effects of chronic haloperidol and clozapine treatment on neurogenesis in the adult rat hippocampus. Neuropsychopharmacology 2004; 29: 1063–9.
42 Chen, BH, Yan, BC, Park, JH, Ahn, JH, Lee, DH, Kim, IH, et al. Aripiprazole, an atypical antipsychotic drug, improves maturation and complexity of neuroblast dendrites in the mouse dentate gyrus via increasing superoxide dismutases. Neurochem Res 2013; 38: 1980–8.
43 Maeda, K, Sugino, H, Hirose, T, Kitagawa, H, Nagai, T, Mizoguchi, H, et al. Clozapine prevents a decrease in neurogenesis in mice repeatedly treated with phencyclidine. J Pharmacol Sci 2007; 103: 299308.
44 Gao, J, Qin, R, Li, M. Repeated administration of aripiprazole produces a sensitization effect in the suppression of avoidance responding and phencyclidine-induced hyperlocomotion and increases D2 receptor-mediated behavioral function. J Psychopharmacol 2015; 29: 390400.
45 Egan, MF, Kojima, M, Callicott, JH, Goldberg, TE, Kolachana, BS, Bertolino, A, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 2003; 112: 257–69.
46 Park, SW, Lee, JG, Ha, EK, Choi, SM, Cho, HY, Seo, MK, et al. Differential effects of aripiprazole and haloperidol on BDNF-mediated signal changes in SH-SY5Y cells. Eur Neuropsychopharmacol 2009; 19: 356–62.
47 Binder, DK, Scharfman, HE. Brain-derived neurotrophic factor. Growth Factors 2004; 22: 123–31.
48 Kuhn, S, Musso, F, Mobascher, A, Warbrick, T, Winterer, G, Gallinat, J. Hippocampal subfields predict positive symptoms in schizophrenia: first evidence from brain morphometry. Transl Psychiatry 2012; 2: e127.
49 Mathew, I, Gardin, TM, Tandon, N, Eack, S, Francis, AN, Seidman, LJ, et al. Medial temporal lobe structures and hippocampal subfields in psychotic disorders: findings from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study. JAMA Psychiatry 2014; 71: 769–77.
50 Kawano, M, Sawada, K, Shimodera, S, Ogawa, Y, Kariya, S, Lang, DJ, et al. Hippocampal subfield volumes in first episode and chronic schizophrenia. PLoS One 2015; 10: e0117785.
51 Wisse, LE, Biessels, GJ, Geerlings, MI. A critical appraisal of the hippocampal subfield segmentation package in freeSurfer. Front Aging Neurosci 2014; 6: 261.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

BJPsych Open
  • ISSN: -
  • EISSN: 2056-4724
  • URL: /core/journals/bjpsych-open
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
Type Description Title
PDF
Supplementary materials

Bodnar et al. supplementary material
Supplementary Material

 PDF (210 KB)
210 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 1
Total number of PDF views: 31 *
Loading metrics...

Abstract views

Total abstract views: 84 *
Loading metrics...

* Views captured on Cambridge Core between 2nd January 2018 - 21st June 2018. This data will be updated every 24 hours.

The effect of second-generation antipsychotics on hippocampal volume in first episode of psychosis: longitudinal study

  • Michael Bodnar (a1) (a2), Ashok K. Malla (a1) (a3), Carolina Makowski (a4), M. Mallar Chakravarty (a3) (a4), Ridha Joober (a1) (a3) and Martin Lepage (a1) (a2) (a4) (a3)...
Submit a response

eLetters

No eLetters have been published for this article.

×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *