Skip to main content
×
×
Home

Interhemispheric functional disconnection because of abnormal corpus callosum integrity in bipolar disorder type II

  • Fumihiko Yasuno (a1), Takashi Kudo (a2), Kiwamu Matsuoka (a3), Akihide Yamamoto (a4), Masato Takahashi (a3), Jyoji Nakagawara (a5), Kazuyuki Nagatsuka (a6), Hidehiro Iida (a6) and Toshifumi Kishimoto (a3)...
Abstract
Background

A significantly lower fractional anisotropy (FA) value has been shown in anterior parts of the corpus callosum in patients with bipolar disorder.

Aims

We investigated the association between abnormal corpus callosum integrity and interhemispheric functional connectivity (IFC) in patients with bipolar disorder.

Methods

We examined the association between FA values in the corpus callosum (CC-FA) and the IFC between homotopic regions in the anterior cortical structures of bipolar disorder (n=16) and major depressive disorder (n=22) patients with depressed or euthymic states.

Results

We found a positive correlation between the CC-FA and IFC values between homotopic regions of the ventral prefrontal cortex and insula cortex, and significantly lower IFC between these regions in bipolar disorder patients.

Conclusions

The abnormal corpus callosum integrity in bipolar disorder patients is relevant to the IFC between homotopic regions, possibly disturbing the exchange of emotional information between the cerebral hemispheres resulting in emotional dysregulation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Interhemispheric functional disconnection because of abnormal corpus callosum integrity in bipolar disorder type II
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Interhemispheric functional disconnection because of abnormal corpus callosum integrity in bipolar disorder type II
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Interhemispheric functional disconnection because of abnormal corpus callosum integrity in bipolar disorder type II
      Available formats
      ×
Copyright
This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) licence (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Corresponding author
Fumihiko Yasuno, Department of Psychiatry, Nara Medical University, 840 Shijocho, Kashihara, 634-8522, Japan. Email: ejm86rp@yahoo.co.jp
Footnotes
Hide All

Declaration of interest

None.

Footnotes
References
Hide All
1 Marlinge, E, Bellivier, F, Houenou, J. White matter alterations in bipolar disorder: potential for drug discovery and development. Bipolar Disord 2014; 16: 97112.
2 Emsell, L, Leemans, A, Langan, C, Van Hecke, W, Barker, GJ, McCarthy, P, et al. Limbic and callosal white matter changes in euthymic bipolar I disorder: an advanced diffusion magnetic resonance imaging tractography study. Biol Psychiatry 2013; 73: 194201.
3 Sarrazin, S, Poupon, C, Linke, J, Wessa, M, Phillips, M, Delavest, M, et al. A multicenter tractography study of deep white matter tracts in bipolar I disorder: psychotic features and interhemispheric disconnectivity. JAMA Psychiatry 2014; 71: 388–96.
4 Wang, F, Kalmar, JH, Edmiston, E, Chepenik, LG, Bhagwagar, Z, Spencer, L, et al. Abnormal corpus callosum integrity in bipolar disorder: a diffusion tensor imaging study. Biol Psychiatry 2008; 64: 730–3.
5 Lloyd, AJ, Ali, HE, Nesbitt, D, Moore, PB, Young, AH, Ferrier, IN. Corpus callosum changes in euthymic bipolar affective disorder. Br J Psychiatry 2014; 204: 129–36.
6 Macritchie, KAN, Lloyd, AJ, Bastin, ME, Vasudev, K, Gallagher, P, Eyre, R, et al. White matter microstructural abnormalities in euthymic bipolar disorder. Br J Psychiatry 2010; 196: 52–8.
7 Matsuoka, K, Yasuno, F, Kishimoto, T, Yamamoto, A, Kiuchi, K, Kosaka, J, et al. Microstructural differences in the corpus callosum in patients with bipolar disorder and major depressive disorder. J Clin Psychiatry 2016 (Epub ahead of print).
8 Yasuno, F, Kazui, H, Yamamoto, A, Morita, N, Kajimoto, K, Ihara, M, et al. Resting-state synchrony between the retrosplenial cortex and anterior medial cortical structures relates to memory complaints in subjective cognitive impairment. Neurobiol Aging 2015; 36: 2145–52.
9 Matsuoka, K, Yasuno, F, Taguchi, A, Yamamoto, A, Kajimoto, K, Kazui, H, et al. Delayed atrophy in posterior cingulate cortex and apathy after stroke. Int J Geriatr Psychiatry 2015; 30: 566–72.
10 Lenroot, RK, Giedd, JN. Sex differences in the adolescent brain. Brain Cogn 2010; 72: 4655.
11 Salat, DH, Tuch, DS, Hevelone, ND, Fischl, B, Corkin, S, Rosas, HD, et al. Age-related changes in prefrontal white matter measured by diffusion tensor imaging. Ann N Y Acad Sci 2005; 1064: 3749.
12 Taylor, WD, Macfall, JR, Boyd, B, Payne, ME, Sheline, YI, Krishnan, RR, et al. One-year change in anterior cingulate cortex white matter microstructure: relationship with late-life depression outcomes. Am J Geriatr Psychiatry 2011; 19: 4352.
13 Barysheva, M, Jahanshad, N, Foland-Ross, L, Altshuler, LL, Thompson, PM. White matter microstructural abnormalities in bipolar disorder: a whole brain diffusion tensor imaging study. Neuroimage Clin 2013; 2: 558–68.
14 Lagopoulos, J, Hermens, DF, Hatton, SN, Tobias-Webb, J, Griffiths, K, Naismith, SL, et al. Microstructural white matter changes in the corpus callosum of young people with bipolar disorder: a diffusion tensor imaging study. PLoS One 2013; 8: e59108.
15 Mahon, K, Burdick, KE, Szeszko, PR. A role for white matter abnormalities in the pathophysiology of bipolar disorder. Neurosci Biobehav Rev 2010; 34: 533–54.
16 Arnone, D, McIntosh, AM, Chandra, P, Ebmeier, KP. Meta-analysis of magnetic resonance imaging studies of the corpus callosum in bipolar disorder. Acta Psychiatr Scand 2008; 118: 357–62.
17 Bellani, M, Yeh, PH, Tansella, M, Balestrieri, M, Soares, JC, Brambilla, P. DTI studies of corpus callosum in bipolar disorder. Biochem Soc Trans 2009; 37: 1096–8.
18 Alexander, AL, Lee, JE, Lazar, M, Field, AS. Diffusion tensor imaging of the brain. Neurotherapeutics 2007; 4: 316–29.
19 Tkachev, D, Mimmack, ML, Ryan, MM, Wayland, M, Freeman, T, Jones, PB, et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 2003; 362: 798805.
20 Carter, CJ. eIF2B and oligodendrocyte survival: where nature and nurture meet in bipolar disorder and schizophrenia? Schizophr Bull 2007; 33: 1343–53.
21 Roy, K, Murtie, JC, El-Khodor, BF, Edgar, N, Sardi, SP, Hooks, BM, et al. Loss of erbB signaling in oligodendrocytes alters myelin and dopaminergic function, a potential mechanism for neuropsychiatric disorders. Proc Natl Acad Sci USA 2007; 104: 8131–6.
22 Owen, JP, Li, YO, Yang, FG, Shetty, C, Bukshpun, P, Vora, S, et al. Resting-state networks and the functional connectome of the human brain in agenesis of the corpus callosum. Brain Connect 2013; 3: 547–62.
23 Shobe, ER. Independent and collaborative contributions of the cerebral hemispheres to emotional processing. Front Hum Neurosci 2014; 8: 230.
24 Tyszka, JM, Kennedy, DP, Adolphs, R, Paul, LK. Intact bilateral resting-state networks in the absence of the corpus callosum. J Neurosci 2011; 31: 15154–62.
25 Bush, G, Luu, P, Posner, MI. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 2000; 4: 215–22.
26 Dunn, LT, Everitt, BJ. Double dissociations of the effects of amygdala and insular cortex lesions on conditioned taste aversion, passive avoidance, and neophobia in the rat using the excitotoxin ibotenic acid. Behav Neurosci 1998; 102: 323.
27 Phillips, ML, Drevets, WC, Rauch, SL, Lane, R. Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol Psychiatry 2003; 54: 504–14.
28 Reiman, EM, Lane, RD, Ahern, GL, Schwartz, GE, Davidson, RJ, Friston, KJ, et al. Neuroanatomical correlates of externally and internally generated human emotion. Am J Psychiatry 1997; 154: 918–25.
29 Ramautar, JR, Slagter, HA, Kok, A, Ridderinkhof, KR. Probability effects in the stop-signal paradigm: the insula and the significance of failed inhibition. Brain Res 2006; 1105: 143–54.
30 Phillips, ML, Young, AW, Senior, C, Brammer, M, Andrew, C, Calder, AJ, et al. A specific neural substrate for perceiving facial expressions of disgust. Nature 1997; 389: 495–8.
31 Malhi, GS, Lagopoulos, J, Sachdev, PS, Ivanovski, B, Shnier, R, Ketter, T. Is a lack of disgust something to fear? A functional magnetic resonance imaging facial emotion recognition study in euthymic bipolar disorder patients. Bipolar Disord 2007; 9: 345–57.
32 Augustine, JR. Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Brain Res Rev 1996; 22: 229–44.
33 Ongür, D, Price, JL. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 2000; 10: 206–19.
34 Yamasaki, H, LaBar, KS, McCarthy, G. Dissociable prefrontal brain systems for attention and emotion. Proc Natl Acad Sci USA 2002; 99: 11447–51.
35 Chen, YC, Thaler, D, Nixon, PD, Stern, CE, Passingham, RE. The functions of the medial premotor cortex. II. The timing and selection of learned movements. Exp Brain Res 1995; 102: 461–73.
36 Lane, RD, Reiman, EM, Axelrod, B, Yun, LS, Holmes, A, Schwartz, GE. Neural correlates of levels of emotional awareness. Evidence of an interaction between emotion and attention in the anterior cingulate cortex. J Cogn Neurosci 1998; 10: 525–35.
37 Phan, KL, Wager, T, Taylor, SF, Liberzon, I. Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 2002; 16: 331–48.
38 Townsend, J, Altshuler, LL. Emotion processing and regulation in bipolar disorder: a review. Bipolar Disord 2012; 14: 326–39.
39 Chen, CH, Suckling, J, Lennox, BR, Ooi, C, Bullmore, ET. A quantitative meta-analysis of fMRI studies in bipolar disorder. Bipolar Disord 2011; 13: 115.
40 Lane, RD, Reiman, EM, Ahern, GL, Schwartz, GE, Davidson, RJ. Neuroanatomical correlates of happiness, sadness, and disgust. Am J Psychiatry 1997; 154: 926–33.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

BJPsych Open
  • ISSN: -
  • EISSN: 2056-4724
  • URL: /core/journals/bjpsych-open
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 27 *
Loading metrics...

Abstract views

Total abstract views: 70 *
Loading metrics...

* Views captured on Cambridge Core between 2nd January 2018 - 17th July 2018. This data will be updated every 24 hours.

Interhemispheric functional disconnection because of abnormal corpus callosum integrity in bipolar disorder type II

  • Fumihiko Yasuno (a1), Takashi Kudo (a2), Kiwamu Matsuoka (a3), Akihide Yamamoto (a4), Masato Takahashi (a3), Jyoji Nakagawara (a5), Kazuyuki Nagatsuka (a6), Hidehiro Iida (a6) and Toshifumi Kishimoto (a3)...
Submit a response

eLetters

No eLetters have been published for this article.

×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *