Skip to main content Accessibility help
×
×
Home

Predicting major mental illness: ethical and practical considerations

  • Stephen M. Lawrie (a1), Sue Fletcher-Watson (a2), Heather C. Whalley (a3) and Andrew M. McIntosh (a4)
Summary

An increasing body of genetic and imaging research shows that it is becoming possible to forecast the onset of major psychiatric disorders such as depression and schizophrenia before people become ill with ever improving accuracy. Practical issues such as the optimal combination of clinical and biological variables are being addressed, but the application of predictive algorithms to individuals or in routine clinical settings have yet to be tested. The development of predictive methods in mental health comes with substantial ethical questions, including whether people wish to know their level of risk, as well as individual and societal attitudes to the potential adverse effects of data sharing, early diagnosis and treatment, which so far have been largely ignored. Preliminary data suggests that at least some people think predictive research is valuable and would take part in such studies, and some would welcome knowing the results. Future initiatives should systematically assess opinions and attitudes in conjunction with scientific and technical advances.

Declaration of interest

In the past 3 years, S.M.L. has received personal fees from Otsuaka, Sunovion and Janssen, and research grant support from Janssen and Lundbeck. A.M.M. has received research support from the Sackler Trust, Eli Lilly and Janssen. S.M.L. is part of the PSYSCAN consortium.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Predicting major mental illness: ethical and practical considerations
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Predicting major mental illness: ethical and practical considerations
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Predicting major mental illness: ethical and practical considerations
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Corresponding author
Correspondence: Stephen M. Lawrie, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK. Email: s.lawrie@ed.ac.uk
References
Hide All
1Cooper, D, Limet, N, McClung, I, Lawrie, SM. Towards clinically useful neuroimaging in psychiatric practice. Br J Psychiatry 2013; 203: 242–4.
2Robinson, L, Sprooten, E, Lawrie, SM. Brain imaging in psychosis and psychopathy–ethical considerations. Cortex 2011; 47: 1236–9.
3Lawrie, SM, Stanfield, A, Johnstone, EC, McIntosh, AM. Predicting first episode psychosis in those at high risk for genetic or cognitive reasons. Epidemiol Psychiatr Sci 2012; 21: 323–8.
4Bernardini, F, Attademo, L, Cleary, SD, Luther, C, Shim, RS, Quartesan, R, et al. Risk prediction models in psychiatry: toward a new frontier for the prevention of mental illnesses. J Clin Psychiatry 2017; 78: 572–83.
5Whalley, HC, Sussmann, JE, Romaniuk, L, Stewart, T, Papmeyer, M, Sprooten, E, et al. Prediction of depression in individuals at high familial risk of mood disorders using functional magnetic resonance imaging. PLoS One 2013; 8: e57357.
6Schmidt, A, Cappucciati, M, Radua, J, Rutigliano, G, Rocchetti, M, Dell'Osso, L, et al. Improving prognostic accuracy in subjects at clinical high risk for psychosis: systematic review of predictive models and meta-analytical sequential testing simulation. Schizophr Bull 2017; 43: 375–88.
7Hunter, SA, Lawrie, SM. Imaging and genetic biomarkers predicting transition to psychosis. Curr Top Behav Neurosci 2018; 40: 353–88.
8Cannon, TD, Yu, C, Addington, J, Bearden, CE, Cadenhead, KS, Cornblatt, BA, et al. An individualized risk calculator for research in prodromal psychosis. Am J Psychiatry 2016; 173: 980–8.
9Zarogianni, E, Storkey, AJ, Johnstone, EC, Owens, DG, Lawrie, SM. Improved individualized prediction of schizophrenia in subjects at familial high risk, based on neuroanatomical data, schizotypal and neurocognitive features. Schizophr Res 2017; 181: 612.
10Lawrie, SM. Clinical risk prediction in schizophrenia. Lancet Psychiatry 2014; 1: 406–8.
11Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014; 511: 421–7.
12Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat Genet 2018; 50: 668–81.
13Agerbo, E, Sullivan, PF, Vilhjálmsson, BJ, Pedersen, CB, Mors, O, Børglum, AD, et al. Polygenic risk score, parental socioeconomic status, family history of psychiatric disorders, and the risk for schizophrenia: a Danish population-based study and meta-analysis. JAMA Psychiatry 2015; 72: 635–41.
14Neilson, E, Bois, C, Clarke, TK, Hall, L, Johnstone, EC, Owens, DGC, et al. Polygenic risk for schizophrenia, transition and cortical gyrification: a high-risk study. Psychol Med 2018; 48: 1532–9.
15Lawrie, SM, Olabi, B, Hall, J, McIntosh, AM. Do we have any solid evidence of clinical utility about the pathophysiology of schizophrenia? World Psychiatry 2011; 10: 1931.
16Alladi C, G, Etain, B, Bellivier, F, Marie-Claire, C. DNA methylation as a biomarker of treatment response variability in serious mental illnesses: a systematic review focused on bipolar disorder, schizophrenia, and major depressive disorder. Int J Mol Sci 2018; 19: E3026.
17Fond, G, d'Albis, MA, Jamain, S, Tamouza, R, Arango, C, Fleischhacker, WW, et al. The promise of biological markers for treatment response in first-episode psychosis: a systematic review. Schizophr Bull 2015; 41: 559–73.
18Marwood, L, Wise, T, Perkins, AM, Cleare, AJ. Meta-analyses of the neural mechanisms and predictors of response to psychotherapy in depression and anxiety. Neurosci Biobehav Rev 2018; 95: 6172.
19Lee, Y, Ragguett, RM, Mansur, RB, Boutilier, JJ, Rosenblat, JD, Trevizol, A, et al. Applications of machine learning algorithms to predict therapeutic outcomes in depression: a meta-analysis and systematic review. J Affect Disord 2018; 241: 519–32.
20Drysdale, AT, Grosenick, L, Downar, J, Dunlop, K, Mansouri, F, Meng, Y, et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med 2017; 23: 2838.
21McGinn, TG, Guyatt, GH, Wyer, PC, et al. Users’ guides to the medical literature, XXII: how to use articles about clinical decision rules. JAMA 2000; 284: 7984.
22Dluhoš, P, Schwarz, D, Cahn, W, van Haren, N, Kahn, R, Španiel, F, et al. Multi-center machine learning in imaging psychiatry: a meta-model approach. Neuroimage 2017; 155: 1024.
23Thompson, PM, Stein, JL, Medland, SE, Hibar, DP, Vasquez, AA, Renteria, ME. The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav 2014; 8: 153–82.
24Rose, D, Papoulias, C, MacCabe, J, Walke, J. Service users’ and carers’ views on research towards stratified medicine in psychiatry: a qualitative study. BMC Res Notes 2015; 8: 489.
25Fisher, AJ, Medaglia, JD, Jeronimus, BF. Lack of group-to-individual generalizability is a threat to human subjects research. Proc Natl Acad Sci U S A 2018; 115: E610615.
26Johnstone, M, Vasistha, NA, Barbu, MC, Dando, O, Burr, K, Christopher, E, et al. Reversal of proliferation deficits caused by chromosome 16p13.11 microduplication through targeting NFκB signaling: an integrated study of patient-derived neuronal precursor cells, cerebral organoids and in vivo brain imaging. Mol Psychiatry 2019; 24: 294311.
27Fusar-Poli, P, McGorry, PD, Kane, JM. Improving outcomes of first-episode psychosis: an overview. World Psychiatry 2017; 16: 251–65.
28Correll, CU, Galling, B, Pawar, A, Krivko, A, Bonetto, C, Ruggeri, M, et al. Comparison of early intervention studies vs treatment as usual for early-phase psychosis: a systematic review, meta-analysis and meta-regression. JAMA Psychiatry 2018; 75: 555–65.
29McHugh, RK, Whitton, SW, Peckham, AD, Welge, JA, Otto, MW. Patient preference for psychological vs pharmacologic treatment of psychiatric disorders: a meta-analytic review. J Clin Psychiatry 2013; 74: 595602.
30Doyle, OM, Bois, C, Thomson, P, Romaniuk, L, Whitcher, B, Williams, SC, et al. The cortical thickness phenotype of individuals with DISC1 translocation resembles schizophrenia. J Clin Invest 2015; 125: 3714–22.
31Yehuda, R, Lehrner, A. Intergenerational transmission of trauma effects: putative role of epigenetic mechanisms. World Psychiatry 2018; 17: 243–57.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

BJPsych Open
  • ISSN: -
  • EISSN: 2056-4724
  • URL: /core/journals/bjpsych-open
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

Predicting major mental illness: ethical and practical considerations

  • Stephen M. Lawrie (a1), Sue Fletcher-Watson (a2), Heather C. Whalley (a3) and Andrew M. McIntosh (a4)
Submit a response

eLetters

No eLetters have been published for this article.

×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *