Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-18T04:19:50.328Z Has data issue: false hasContentIssue false

Prolonged fasting outperforms short-term fasting in terms of glucose tolerance and insulin release: a randomised controlled trial

Published online by Cambridge University Press:  03 March 2023

Rima Solianik*
Affiliation:
Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
Katerina Židonienė
Affiliation:
Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
Nerijus Eimantas
Affiliation:
Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
Marius Brazaitis
Affiliation:
Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
*
*Corresponding author: Rima Solianik, email rima.solianik@lsu.lt

Abstract

Fasting is related to glucose intolerance and insulin resistance, but it is unknown whether the duration of fasting influences these factors. We explored whether prolonged fasting increases norepinephrine and ketone concentrations and decreases core temperature to a greater extent than short-term fasting; if so, this should lead to improved glucose tolerance. Forty-three healthy young adult males were randomly assigned to undergo a 2-d fast, 6-d fast or the usual diet. Changes in rectal temperature (TR), ketone and catecholamine concentrations, glucose tolerance and insulin release in response to an oral glucose tolerance test were assessed. Both fasting trials increased ketone concentration, and the effect was larger after the 6-d fast (P < 0·05). TR and epinephrine concentration increased only after the 2-d fast (P < 0·05). Both fasting trials increased the glucose area under the curve (AUC) (P < 0·05), but the AUC remained higher than the baseline value after participants returned to their usual diet in the 2-d fast group (P < 0·05). Neither fasting had an immediate effect on the insulin AUC, although it increased after return to their usual diet in the 6-d fast group (P < 0·05). These data suggest that the 2-d fast elicited residual impaired glucose tolerance, which may be linked to greater perceived stress during short-term fasting, as shown by the epinephrine response and change in core temperature. By contrast, prolonged fasting seemed to evoke an adaptive residual mechanism that is related to improved insulin release and maintained glucose tolerance.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kuo, FY, Cheng, KC, Li, Y, et al. (2021) Oral glucose tolerance test in diabetes, the old method revisited. World Diabetes 12, 786793.10.4239/wjd.v12.i6.786CrossRefGoogle ScholarPubMed
Walsh, CH, O’Regan, J & O’Sullivan, DJ (1973) Effect of different periods of fasting on oral glucose tolerance. Br Med J 2, 691693.10.1136/bmj.2.5868.691CrossRefGoogle ScholarPubMed
Anderson, JW & Herman, RH (1972) Effect of fasting, caloric restriction, and refeeding on glucose tolerance of normal men. Am J Clin Nutr 25, 4152.10.1093/ajcn/25.1.41CrossRefGoogle ScholarPubMed
Göschke, H (1977) Mechanism of glucose intolerance during fasting: differences between lean and obese subjects. Metabolism 26, 11471153.10.1016/0026-0495(77)90042-7CrossRefGoogle ScholarPubMed
Gallen, IW, Macdonald, IA & Mansell, PI (1990) The effect of a 48 h fast on the physiological responses to food ingestion in normal-weight women. Br J Nutr 63, 5364.10.1079/BJN19900091CrossRefGoogle ScholarPubMed
Norton, L, Parr, T, Bardsley, RG, et al. (2007) Characterization of GLUT4 and calpain expression in healthy human skeletal muscle during fasting and refeeding. Acta Physiol 189, 233240.10.1111/j.1748-1716.2006.01639.xCrossRefGoogle ScholarPubMed
Frank, P, Katz, A, Andersson, E, et al. (2013) Acute exercise reverses starvation-mediated insulin resistance in humans. Am J Physiol Endocrinol Metab 304, E436E443.10.1152/ajpendo.00416.2012CrossRefGoogle ScholarPubMed
Yang, C, Ma, Q, Zhang, H, et al. (2021) Ten days of complete fasting affected subjective sensations but not cognitive abilities in healthy adults. Eur J Nutr 60, 27472758.10.1007/s00394-020-02450-7CrossRefGoogle Scholar
Nonogaki, K (2000) New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia 43, 533549.10.1007/s001250051341CrossRefGoogle ScholarPubMed
Zauner, C, Schneeweiss, B, Kranz, A, et al. (2000) Resting energy expenditure in short-term starvation is increased as a result of an increase in serum norepinephrine. Am J Clin Nutr 71, 15111515.10.1093/ajcn/71.6.1511CrossRefGoogle ScholarPubMed
Mattson, MP, Moehl, K, Ghena, N, et al. (2018) Intermittent metabolic switching, neuroplasticity and brain health. Nat Rev Neurosci 19, 6380.10.1038/nrn.2017.156CrossRefGoogle ScholarPubMed
Myette-Côté, É, Neudorf, H, Rafiei, H, et al. (2018) Prior ingestion of exogenous ketone monoester attenuates the glycaemic response to an oral glucose tolerance test in healthy young individuals. J Physiol 596, 13851395.10.1113/JP275709CrossRefGoogle Scholar
Veech, RL (2013) Ketone esters increase brown fat in mice and overcome insulin resistance in other tissues in the rat. Ann N Y Acad Sci 1302, 4248.10.1111/nyas.12222CrossRefGoogle ScholarPubMed
Stanford, KI, Middelbeek, RJ, Townsend, KL, et al. (2013) Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest 123, 215223.10.1172/JCI62308CrossRefGoogle ScholarPubMed
Trayhurn, P & Jennings, G (1986) Evidence that fasting can induce a selective loss of uncoupling protein from brown adipose tissue mitochondria of mice. Biosci Rep 6, 805810.10.1007/BF01117103CrossRefGoogle ScholarPubMed
Gianotti, M, Clapés, J, Lladó, I, et al. (1998) Effect of 12, 24 and 72 hours fasting in thermogenic parameters of rat brown adipose tissue mitochondrial subpopulations. Life Sci 62, 18891899.10.1016/S0024-3205(98)00153-2CrossRefGoogle ScholarPubMed
Inokuma, K, Ogura-Okamatsu, Y, Toda, C, et al. (2005) Uncoupling protein 1 is necessary for norepinephrine-induced glucose utilization in brown adipose tissue. Diabetes 54, 13851391.10.2337/diabetes.54.5.1385CrossRefGoogle ScholarPubMed
Razzoli, M, Emmett, MJ, Lazar, MA, et al. (2018) β-Adrenergic receptors control brown adipose UCP-1 tone and cold response without affecting its circadian rhythmicity. FASEB J 32, 56405646.10.1096/fj.201800452RCrossRefGoogle ScholarPubMed
Champigny, O & Ricquier, D (1990) Effects of fasting and refeeding on the level of uncoupling protein mRNA in rat brown adipose tissue: evidence for diet-induced and cold-induced responses. J Nutr 120, 17301736.10.1093/jn/120.12.1730CrossRefGoogle ScholarPubMed
Landsberg, L (2012) Core temperature: a forgotten variable in energy expenditure and obesity? Obes Rev 13, 97104.10.1111/j.1467-789X.2012.01040.xCrossRefGoogle ScholarPubMed
Mari, A, Pacini, G, Murphy, E, et al. (2001) A model-based method for assessing insulin sensitivity from the oral glucose tolerance test. Diabetes Care 24, 539548.10.2337/diacare.24.3.539CrossRefGoogle ScholarPubMed
Longo, VD, Di Tano, M, Mattson, MP, et al. (2021) Intermittent and periodic fasting, longevity and disease. Nat Aging 1, 4759.10.1038/s43587-020-00013-3CrossRefGoogle ScholarPubMed
Numao, S, Kawano, H, Endo, N, et al. (2012) Short-term low carbohydrate/high-fat diet intake increases postprandial plasma glucose and glucagon-like peptide-1 levels during an oral glucose tolerance test in healthy men. Eur J Clin Nutr 66, 926931.10.1038/ejcn.2012.58CrossRefGoogle ScholarPubMed
Armstrong, LE (2005) Hydration assessment techniques. Nutr Rev 63, S40S54.10.1111/j.1753-4887.2005.tb00153.xCrossRefGoogle ScholarPubMed
Burton, AC (1935) Human calorimetry: II. The average temperature of the tissues of the body. J Nutr 9, 261280.10.1093/jn/9.3.261CrossRefGoogle Scholar
Matthews, JN, Altman, DG, Campbell, MJ, et al. (1990) Analysis of serial measurements in medical research. BMJ 300, 230235.10.1136/bmj.300.6719.230CrossRefGoogle ScholarPubMed
Oka, T (2018) Stress-induced hyperthermia and hypothermia. Handb Clin Neurol 157, 599621.10.1016/B978-0-444-64074-1.00035-5CrossRefGoogle ScholarPubMed
Alawi, KM, Aubdool, AA, Liang, L, et al. (2015) The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature. FASEB J 29, 42854298.10.1096/fj.15-272526CrossRefGoogle ScholarPubMed
Ahn, S, Park, J, An, I, et al. (2014) Transient receptor potential cation channel V1 (TRPV1) is degraded by starvation- and glucocorticoid-mediated autophagy. Mol Cells 37, 257263.10.14348/molcells.2014.2384CrossRefGoogle ScholarPubMed
Vinales, KL, Begaye, B, Thearle, MS, et al. (2019) Core body temperature, energy expenditure, and epinephrine during fasting, eucaloric feeding, and overfeeding in healthy adult men: evidence for a ceiling effect for human thermogenic response to diet. Metabolism 94, 5968.10.1016/j.metabol.2019.01.016CrossRefGoogle ScholarPubMed
Wilhelmi de Toledo, F, Grundler, F, Sirtori, CR, et al. (2020) Unravelling the health effects of fasting: a long road from obesity treatment to healthy life span increase and improved cognition. Ann Med 52, 147161.10.1080/07853890.2020.1770849CrossRefGoogle Scholar
Vinales, KL, Schlögl, M, Piaggi, P, et al. (2017) The consistency in macronutrient oxidation and the role for epinephrine in the response to fasting and overfeeding. J Clin Endocrinol Metab 102, 279289.10.1210/jc.2016-3006CrossRefGoogle ScholarPubMed
Cheng, CW, Villani, V, Buono, R, et al. 2017. Fasting-mimicking diet promotes Ngn3-driven β-cell regeneration to reverse diabetes. Cell 168, 775788.e12.10.1016/j.cell.2017.01.040CrossRefGoogle ScholarPubMed
Kelly, AC, Camacho, LE, Pendarvis, K, et al. (2018) Adrenergic receptor stimulation suppresses oxidative metabolism in isolated rat islets and Min6 cells. Mol Cell Endocrinol 473, 136145.10.1016/j.mce.2018.01.012CrossRefGoogle ScholarPubMed
Li, R, Huang, H, Limesand, SW, et al. (2021) Pancreatic islets exhibit dysregulated adaptation of insulin secretion after chronic epinephrine exposure. Curr Issues Mol Biol 43, 240250.10.3390/cimb43010020CrossRefGoogle ScholarPubMed
DeFronzo, RA, Tobin, JD & Andres, R (1979) Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 237, E214E223.Google ScholarPubMed
Hücking, K, Watanabe, RM, Stefanovski, D, et al. (2008) OGTT-derived measures of insulin sensitivity are confounded by factors other than insulin sensitivity itself. Obesity 16, 19381945.10.1038/oby.2008.336CrossRefGoogle Scholar