Skip to main content
×
×
Home

Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions

  • William Mullen (a1), Christine A. Edwards (a2) and Alan Crozier (a1)
Abstract

It is essential to have a thorough knowledge of the bioavailability and metabolism of dietary flavonols to understand their role in disease prevention. Lightly fried onions containing 275μmol flavonols, principally quercetin-4′-glucoside and quercetin-3,4′-diglucoside, were fed to healthy human volunteers and plasma and urine were collected over a 24h period. Samples were analysed by HPLC with diode array and tandem mass spectrometric detection. Five flavonol metabolites, quercetin-3′-sulphate, quercetin-3-glucuronide, isorhamnetin-3-glucuronide, a quercetin diglucuronide and a quercetin glucuronide sulphate, were detected in plasma in quantifiable amounts with trace quantities of six additional quercetin metabolites. Sub-micromolar peak plasma concentrations (cmax) of quercetin-3′-sulphate, quercetin-3-glucuronide, isorhamnetin-3-glucuronide and quercetin diglucuronide were observed 0.6–0.8h after ingestion. In contrast, the cmax of quercetin glucuronide sulphate was 2.5h. The elimination half-lives (t1/2) of quercetin-3′-sulphate, quercetin-3-glucuronide and quercetin diglucuronide were 1.71, 2.33 and 1.76h respectively, while the t1/2 of isorhamnetin-3-glucuronide was 5.34h and that of quercetin glucuronide sulphate was 4.54h. The profile of metabolites excreted in urine was markedly different to that of plasma with many of the major urinary components, including quercetin-3′-glucuronide, two quercetin glucoside sulphates and a methylquercetin diglucuronide, absent or present in only trace amounts in the bloodstream indicative of substantial phase II metabolism. Total urinary excretion of quercetin metabolites was 12·9μmol, corresponding to 4·7% of intake. If these samples had been subjected to hydrolysis, as in many previous studies, only quercetin and isorhamnetin would have been detected and quantified. The bioactivity of these metabolites should be considered.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Professor Alan Crozier, fax +44 (0)141 330 5364, email a.crozier@bio.gla.ac.uk
References
Hide All
Aziz, AA, Edwards, CA, Cahill, AP, Khan, KM, Finlay, IG, Lean, MEJ & Crozier, AAbsorption and excretion of the conjugated flavonols, quercetin-3,4'-diO-β- d -glucoside, quercetin-4'- O -β- d -glucoside and isorhamnetin-4'- O -β- d -glucoside, in human ileostomy volunteers after the consumption of onions. Molecular and Therapeutic Aspects of Redox Biochemistry. [Bahorun, T and Gurib-Fakim, A] London: London OICA International 2003 pp.194205.
Aziz, AA, Edwards, CA, Lean, MEJ & Crozier, AAbsorption and excretion of conjugated flavonols, including quercetin-4'- O -β-glucoside and isorhamnetin-4'- O -β-glucoside by human volunteers after the consumption of onions. Free Rad Res (1998) 29 257269.
Boersma, MG, vad der Woude, H, Bogaards, J, Boerens, S, Vervoort, J, Cnubben, NHP, van Iersel, MLPS, van Bladeren, PJ & Tietjens, IMCMRegioselectivity of phase II metabolism of luteolin and quercetin by UDP-glucuronyl transferases. Chem Res Toxicol (2002) 15 662670.
Caldwell, ST, Crozier, A & Hartley, RCIsotopic labelling of quercetin-4'- O -β-glucoside. Tetrahedron (2000) 56 41014106.
Chen, G, Zhang, D, Jing, N, Yin, S, Falany, CN & Radominska-Pandya, AHuman intestinal sulfotransferases: identification and distribution. Toxicol Appl Pharmacol (2003) 187 186197.
Crozier, A, Lean, MEJ, McDonald, MS & Black, CQuantitative analysis of the flavonoid content of commercial tomatoes, onions, lettuce and celery. J Agric Food Chem (1998) 45 590595.
Crozier, A, Yokota, T, Jaganath, IB, Marks, S, Saltmarsh, M & Clifford, MNSecondary metabolites in fruits, vegetables and other plant-derived dietary components Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet [Crozier, AAshihara, HClifford, MN] Oxford BlackwellsIn the Press 2006
Day, AJ, Gee, JM, DuPont, MS, Johnson, IT & Williamson, GAbsorption of quercetin-3-glucoside and quercetin-4'-glucoside in the rat small intestine: the role of lactase phloridzin hydrolase and sodium-dependent glucose transporter. Biochem Pharmacol (2003) 65 11991206.
Day, AJ, Mellon, F, Barron, D, Sarrazin, G, Morgan, MRA & Williamson, GHuman metabolism of dietary flavonoids: identification of plasma metabolites of quercetin. Free Rad Res (2001) 35 941952.
Day, AJ & Williamson, GBiomarkers of dietary flavonoids: a review of the current evidence for identification of quercetin glycosides in plasma. Br J Nutr (2001) 86 S105S110.
Day, AJ & Williamson, GAbsorption of quercetin glycosides. Flavonoids in Health and Disease. pp. [Rice-Evans, CAPacker, L]. New York: Marcel Dekker 2003 391412
Déprez, S, Brezillon, C, Rabot, S, Philippe, C, Mila, I, Lapierre, C & Scalbert, APolymeric proanthocyanidins are catabolized by human colonic microflora into low-molecular-weight phenolic acids. J Nutr (2000) 130 27332738.
De Santi, C, Pietrabissa, A, Spisni, R, Mosca, F & Pacifici, GMSulphation of reseveratrol, a natural product present in grapes and wine, in human liver and duodenum. Xenobiotica (2000) 30 609617.
Gonthier, M-P, Donovan, JL, Texier, O, Felgines, C, Rémésy, C & Scalbert, AMetabolism of dietary procyanidins in rats. Free Rad Biol Med (2003) 35 837844.
Graefe, EU, Wittig, J, Mueller, S, Riethling, A-K, Uehleke, B, Drewelow, B, Pforte, H, Jacobasch, G, Derendorf, H & Veit, MPharmacokinetics and bioavailability of quercetin glycosides in humans. J Clin Pharmacol (2001) 41 492499.
Hollman, PCH, van der Gaag, MS, Mengelers, MJB, van Trijp, JMP, de Vries, JHM & Katan, MBAbsorption and disposition kinetics of the dietary antioxidant quercetin in man. Free Rad Biol Med (1996) 21 703707.
Hollman, PCH, van Trip, JMP, Buysman, MNCP, van der Gaag, MS, Mengelers, MJB, de Vries, JHM & Katan, MBRelative bioavailability of the antioxidant quercetin from various foods. FEBS Lett (1997) 418 152156.
Matern, H & Matern, SFormation of bile acid glucosides and dilichyl phosphoglucose by microsomal glucosyl transferases in liver, kidney and intestine of man. Biochim Biophys Acta (1987) 921 16.
Mauri, PL, Iemoli, L, Gardana, C, Riso, P, Simonetti, P, Porrini, M & Pietta, PGLiquid chromatography electrospray ionization mass spectrometric characterization of flavonol glycosides in tomatoes extracts and human plasma. Rapid Commun Mass Spectrom (1999) 13 924931.
Moon, J-H, Makata, R, Oshima, S, Inakuma, T & Terao, JAccumulation of quercetin conjugates in blood plasma after the short-term ingestion of onions by women. Am J Regulatory Integrative Comp Physiol 2000 279 R461R467.
Mullen, W, Boitier, A, Stewart, AJ & Crozier, AFlavonoid metabolites in human plasma and urine after the consumption of red onions: analysis by liquid chromatography with photodiode array and full scan tandem mass spectrometric detection. J Chromatogr A (2004) 1058 163168.
Mullen, W, Graf, BA, Caldwell, ST, Hartley, RC, Duthie, GG, Lean, MEJ & Crozier, ADetermination of flavonol metabolites in plasma and tissues of rats by HPLC-radiocounting and tandem mass spectrometry following oral ingestion of [2- 14 C]quercetin-41-glucoside. J Chromatogr A (2002) 50 69026909.
Mullen, W, Hartley, RC & Crozier, ADetection and identification of 14 C-labelled flavonol metabolites by HPLC-radio-counting and tandem mass spectrometry. J Chromatogr A (2003) 1007 2129.
Murota, K & Terao, JAntioxidative flavonoid quercetin: implication of its intestinal absorption and metabolism. Arch Biochem Biophys (2003) 417 1217.
O'Leary, KA, Day, AJ, Needs, PW, Mellon, FA, O'Brien, NM & Williamson, GMetabolism of quercetin-7 and quercetin-3-glucuronides by an in vitro hepatic model: the role of human β-glucuronidase, sulfotransferase, catechol- O -methyltransferase and multi-resistant protein 2 (MRP2) inflavonoid metabolism. Biochem Pharmacol (2003) 65 479491.
Olthof, MR, Hollman, PCH, Buijsman, MNCP, Amelsvoort, JMM & Katan, MBChlorogenic acid, quercetin-3-rutinoside and black tea polyphenols are extensively metabolized in humans. J Nutr (2003) 133 18061814.
Paganga, G & Rice-Evans, CAThe identification of flavonoids as glycosides in human plasma. FEBS Lett (1997) 401 7882.
Radominska-Pandya, A, Little, JM, Pandya, JT, Tephly, TR, King, CD, Barone, GW & Raufman, J-PUDP-glucuronyltransferases in human intestinal mucosa. Bichim Biophys Acta (1998) 1394 199208.
Tsushida, T & Suzuki, MIsolation of flavonoid-glycosides in onion and identification by chemical synthesis of the glycoside (Flavonoids in fruits and vegetables. Part I). Nippon Shokuhin Kagaku Kaishi (1995) 42 100108.
Wittig, J, Herderich, M, Graefe, EU & Veit, MIdentification of quercetin glucuronides in human plasma by high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr B (2001) 753 237243.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed